Sub-quadratic convergence of a smoothing Newton algorithm for the P 0- and monotone LCP
نویسندگان
چکیده
Given M ∈ <n×n and q ∈ <, the linear complementarity problem (LCP) is to find (x, s) ∈ < × < such that (x, s) ≥ 0, s = Mx + q, x s = 0. By using the ChenHarker-Kanzow-Smale (CHKS) smoothing function, the LCP is reformulated as a system of parameterized smooth-nonsmooth equations. As a result, a smoothing Newton algorithm, which is a modified version of the Qi-Sun-Zhou algorithm [Mathematical Programming, Vol. 87, 2000, pp. 1–35], is proposed to solve the LCP with M being assumed to be a P0-matrix (P0−LCP). The proposed algorithm needs only to solve one system of linear equations and to do one line search at each iteration. It is proved in this paper that the proposed algorithm has the following convergence properties: (i) it is well-defined and any accumulation point of the iteration sequence is a solution of the P0−LCP; (ii) it generates a bounded sequence if the P0−LCP has a nonempty and bounded solution set; (iii) if an accumulation point of the iteration sequence satisfies a nonsingularity condition, which implies the P0−LCP has a unique solution, then the whole iteration sequence converges to this accumulation point sub-quadratically with a Q-rate 2 − t, where t ∈ (0, 1) is a parameter; and (iv) if M is positive semidefinite and an accumulation point of the iteration sequence satisfies a strict complementarity condition, then the whole sequence converges to the accumulation point quadratically.
منابع مشابه
Global convergence of sequential injective algorithm for weakly univalent vector equation: application to regularized smoothing Newton algorithm
It is known that the complementarity problems and the variational inequality problems are reformulated equivalently as a vector equation by using the natural residual or Fischer-Burmeister function. In this short paper, we first study the global convergence of a sequential injective algorithm for weakly univalent vector equation. Then, we apply the convergence analysis to the regularized smooth...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA class of smoothing functions for nonlinear and mixed complementarity problems
We propose a class of parametric smooth functions that approximate the fundamental plus function, (x) + =maxf0; xg, by twice integrating a probability density function. This leads to classes of smooth parametric nonlinear equation approximations of nonlinear and mixed complementarity problems (NCPs and MCPs). For any solvable NCP or MCP, existence of an arbitrarily accurate solution to the smoo...
متن کاملA regularized smoothing Newton method for solving the symmetric cone complementarity problem
The symmetric cone complementarity problem (denoted by SCCP) is a class of equilibrium optimization problems, and it contains the standard linear/nonlinear complementarity problem (LCP/NCP), the second-order cone complementarity problem (SOCCP) and the semidefinite complementarity problem (SDCP) as special cases. In this paper, we present a regularized smoothing Newton algorithm for SCCP by mak...
متن کاملA Smoothing Newton-Type Algorithm of Stronger Convergence for the Quadratically Constrained Convex Quadratic Programming
In this paper we propose a smoothing Newton-type algorithm for the problem of minimizing a convex quadratic function subject to finitely many convex quadratic inequality constraints. The algorithm is shown to converge globally and possess stronger local superlinear convergence. Preliminary numerical results are also reported.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 99 شماره
صفحات -
تاریخ انتشار 2004