Electroplating lithium transition metal oxides
نویسندگان
چکیده
Materials synthesis often provides opportunities for innovation. We demonstrate a general low-temperature (260°C) molten salt electrodeposition approach to directly electroplate the important lithium-ion (Li-ion) battery cathode materials LiCoO2, LiMn2O4, and Al-doped LiCoO2. The crystallinities and electrochemical capacities of the electroplated oxides are comparable to those of the powders synthesized at much higher temperatures (700° to 1000°C). This new growth method significantly broadens the scope of battery form factors and functionalities, enabling a variety of highly desirable battery properties, including high energy, high power, and unprecedented electrode flexibility.
منابع مشابه
High-pressure synthesis of novel lithium niobate- type oxides
We found that two lithium niobate-type oxides, CdPbO3 and PbNiO3 were synthesized by high-pressure as metastable low-pressure perovskite-type phases. We then discussed the stability of lithium niobate-type and perovskite-type oxides relative to oxides with other structure for ABO3 compounds. Consequently, the tolerance factor of perovskite is not the only predominant one to determine the stabil...
متن کاملQuantitative Oxidation State Analysis of Transition Metals in a Lithium-ion Battery with High Energy Resolution AES
After a first suggestion of the use of lithium transition-metal oxides in the cathode of lithium-ion battery (LIB) [1], many researchers have investigated to improve its performance such as higher-energy density, longer-life, and lower-cost. For the systematic, effective development, various transition-metals for the cathode active material have been investigated and chemical state characteriza...
متن کاملUncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides.
A novel oxygen vacancy assisted transition metal (TM) diffusion mechanism is proposed for the first time to explain the near-surface phase transformation in lithium excess transition metal layered oxides. Oxygen vacancies and TM migration have been observed at nm scale spatial resolution by Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy. Formation of (dilute) ox...
متن کاملA First Principles Investigation of Transitional Metal Doping in Lithium Battery Cathode Materials
The goal of this work is to understand the properties of mixed-metal intercalation oxides. Using first-principles methods, the effect of doping on the mixing, energetic, and voltage properties as well as the phase diagrams of lithium transition-metal oxides for lithium battery cathode materials was investigated. The effect of doping on the phase separation tendencies of layered transition-metal...
متن کاملDevelopments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. This Review describes some recent developments in the synthesis and characterization of nanostructured cathode materials, including lithium transition metal oxides, vanadium oxides, manganese oxides, lithium ph...
متن کامل