How to read the length of a braid from its curve diagram

نویسنده

  • BERT WIEST
چکیده

We prove that the length a braid, in the sense of Garside, is equal to a winding-number type invariant of the curve diagram of the braid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Read the Lenght of a Braid from Its Curve Diagram

We prove that the length a braid, in the sense of Garside, is equal to a winding-number type invariant of the curve diagram of the braid.

متن کامل

Dehornoy’s Ordering of the Braid Groups Extends the Subword Ordering

Since the ordering is right-invariant this is equivalent to the following, with γ = β1α: Theorem 1′. For any braid γ ∈ Bn and any i ∈ {1, . . . , n − 1} we have γσi > γ. It follows that Dehornoy’s ordering extends the (partial) subword ordering defined in [5]. Theorem 1 was first proved by Laver [8] and Burckel [2] using very different methods. As explained in [8], it can be combined with a the...

متن کامل

COMPUTING THE BRAID MONODROMY OF COMPLETELY REDUCIBLE n-GONAL CURVES

Braid monodromy is an important tool for computing invariants of curves and surfaces. In this paper, the rectangular braid diagram (RBD) method is proposed to compute the braid monodromy of a completely reducible n-gonal curve, i.e. the curves in the form (y−y1(x))...(y−yn(x)) = 0 where n ∈ Z+ and yi ∈ C[x]. Also, an algorithm is presented to compute the Alexander polynomial of these curve comp...

متن کامل

Seifert circles and knot polynomials

In this paper I shall show how certain bounds on the possible diagrams presenting a given oriented knot or link K can be found from its two-variable polynomial PK defined in [3]. The inequalities regarding exponent sum and braid index of possible representations of K by a closed braid which are proved in [5] and [2] follow as a special case. Notation. In a diagram D for an oriented knot, write ...

متن کامل

The Braid Monodromy of Plane Algebraic Curves and Hyperplane Arrangements

To a plane algebraic curve of degree n, Moishezon associated a braid monodromy homomorphism from a finitely generated free group to Artin’s braid group Bn. Using Hansen’s polynomial covering space theory, we give a new interpretation of this construction. Next, we provide an explicit description of the braid monodromy of an arrangement of complex affine hyperplanes, by means of an associated “b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009