Understanding phospholipase D (PLD) using leukocytes: PLD involvement in cell chemotaxis and adhesion

نویسندگان

  • Julian Gomez-Cambronero
  • Mauricio Di Fulvio
  • Katie Knapek
چکیده

Phospholipase D (PLD) is an enzyme that catalyzes the conversion of membrane phosphatidylcholine to choline and phosphatidic acid (PA; a second messenger). PLD is expressed in nearly all types of leukocytes and has been associated with phagocytosis, degranulation, microbial killing, and leukocyte maturation. With the application of recently developed molecular tools (i.e., expression vectors, silencing RNA, and specific antibodies), the demonstration of a key role for PLD in those and related cellular actions has contributed to a better awareness of its importance. A case in point is the recent findings that RNA interference-mediated depletion of PLD results in impaired leukocyte adhesion and chemotaxis toward a gradient of chemokines, implying that PLD is necessary for leukocyte movement. We forecast that based on results such as those, leukocytes may prove to be useful tools to unravel still-unresolved mechanistic issues in the complex biology of PLD. Three such issues are considered here: first, whether the cellular actions of PLD are mediated entirely by PA (the product of its enzymatic reaction) or whether PLD by itself interacts with other protein signaling molecules; second, the current lack of a “PA consensus site” in the multiple intracellular protein targets of PA; and third, the resolution of specific PLD location (upstream or downstream) in a particular effector signaling cascade. There are reasons to expect that leukocytes and their leukemic cell line counterparts will continue yielding invaluable information to cell biologists to resolve standing molecular and functional issues concerning PLD. J. Leukoc. Biol. 82: 000–000; 2007.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی مولکولی فسفولیپاز D به عنوان عامل مؤثر در رشد و بیماری‌زایی میکروارگانیسم‌ها

Background and Objective: Secretory extracellular Phospholipases are generally involved in hydrolysis of extracellular phospholipids and thus providing nutritive source of carbon, nitrogen, and phosphate. However, intracellular phospholipases perform metabolic functions and adjust biologic activities. Synthesis of phospholipases in different pathogenic microorganisms and their mode of action in...

متن کامل

Phospholipase D1 regulates phagocyte adhesion.

Adhesion is a fundamental cellular response that is essential to the physiologic processes of development, differentiation, proliferation, and motility, as well as to the pathology of inflammation, transformation, and metastasis. Adhesion of phagocytic leukocytes is a critical modulator of antimicrobial and cytotoxic functions, including the respiratory burst, secretion, and apoptosis. Because ...

متن کامل

5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis.

The signaling enzyme phospholipase D (PLD) and the lipid second messenger it generates, phosphatidic acid (PA), are implicated in many cell biological processes, including Ras activation, cell spreading, stress fiber formation, chemotaxis, and membrane vesicle trafficking. PLD production of PA is inhibited by the primary alcohol 1-butanol, which has thus been widely employed to identify PLD/PA-...

متن کامل

Phosphatidic acid, phospholipase D and tumorigenesis☆

Phospholipase D (PLD) is a membrane protein with a double role: maintenance of the structural integrity of cellular or intracellular membranes and involvement in cell signaling through the product of the catalytic reaction, PA, and through protein-protein interaction with a variety of partners. Cross-talk during PLD signaling occurs with other cancer regulators (Ras, PDGF, TGF and kinases). Ele...

متن کامل

Phospholipase D is Dispensable for Epidermal Growth Factor-Induced Chemotaxis.

α-Synuclein (α-Syn) is implicated in several neurodegenerative disorders, including Parkinson's disease, known collectively as the synucleinopathies. α-Syn is known to be secreted from the cells and may contribute to the progression of the disease. Although extracellular α-Syn is shown to impair platelet-derived growth factor-induced chemotaxis, molecular mechanism of α-Syn-induced motility fai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007