Sphingosine-1-phosphate prevents permeability increases via activation of endothelial sphingosine-1-phosphate receptor 1 in rat venules.
نویسندگان
چکیده
Sphingosine-1-phosphate (S1P) has been demonstrated to enhance endothelial barrier function in vivo and in vitro. However, different S1P receptor subtypes have been indicated to play different or even opposing roles in the regulation of vascular barrier function. This study aims to differentiate the roles of endogenous endothelial S1P subtype receptors in the regulation of permeability in intact microvessels using specific receptor agonist and antagonists. Microvessel permeability was measured with hydraulic conductivity (L(p)) in individually perfused rat mesenteric venules. S1P-mediated changes in endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura-2-loaded venules. Confocal images of fluorescent immunostaining illustrated the spatial expressions of three S1P subtype receptors (S1P(R1-3)) in rat venules. The application of S1P (1 μM) in the presence of S1P(R1-3) inhibited platelet-activating factor- or bradykinin-induced permeability increase. This S1P effect was reversed only with a selective S1P(R1) antagonist, W-146, and was not affected by S1P(R2) or S1P(R3) antagonists JTE-013 and CAY-10444, respectively. S1P(R1) was also identified as the sole receptor responsible for S1P-mediated increases in endothelial [Ca(2+)](i). S1P(R2) or S1P(R3) antagonist alone affected neither basal L(p) nor platelet-activating factor-induced permeability increase. The selective S1P(R1) agonist, SEW-2871, showed similar [Ca(2+)](i) and permeability effect to that of S1P. These results indicate that, despite the presence of S1P(R1-3) in the intact venules, only the activation of endothelial S1P(R1) is responsible for the protective action of S1P on microvessel permeability and that endogenous S1P(R2) or S1P(R3) did not exhibit functional roles in the regulation of permeability under basal or acutely stimulated conditions.
منابع مشابه
Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive.
Sphingosine 1-phosphate (S1P) is a biologically active lipid. In vitro, S1P tightens the endothelial barrier, as assessed by a rapid increase in electrical resistance and a decrease in solute permeability. We hypothesized that this activity of S1P would also occur in vivo. Hydraulic conductivity (Lp), an assessment of endothelial barrier function, was measured in individually perfused venules i...
متن کاملActivation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells.
The lipid mediator sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SPHK)-induced phosphorylation of sphingosine, is known to stabilize interendothelial junctions and prevent microvessel leakiness. Here, we investigated the role of SPHK1 activation in regulating the increase in pulmonary microvessel permeability induced by challenge of mice with lipopolysaccharide or thrombin l...
متن کاملSphingosine-1-phosphate signaling and biological activities in the cardiovascular system.
The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P1, S1P2 and S1P3. S1P1 expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular...
متن کاملInduction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN.
OBJECTIVES S1P acts via the S1PR family of G protein-coupled receptors to regulate a variety of physiological responses. Whereas S1P1R activates G(i)- and PI-3-kinase-dependent signals to inhibit vascular permeability, the related S1P2R inhibits the PI-3-kinase pathway by coupling to the Rho-dependent activation of the PTEN phosphatase. However, cellular consequences of S1P2R signaling in the v...
متن کاملVASCULAR BIOLOGY Endogenous EPCR/aPC-PAR1 signaling prevents inflammation-induced vascular leakage and lethality
Protease activated receptor 1 (PAR1) signaling can play opposing roles in sepsis, either promoting dendritic cell (DC)–dependent coagulation and inflammation or reducing sepsis lethality due to activated protein C (aPC) therapy. To further define this PAR1 paradox, we focused on the vascular effects of PAR1 signaling. Pharmacological perturbations of the intravascular coagulant balance were com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 299 5 شماره
صفحات -
تاریخ انتشار 2010