Mirror Symmetry and Generalized Complex Manifolds

نویسندگان

  • OREN BEN-BASSAT
  • O. BEN-BASSAT
چکیده

In this paper we develop a relative version of T-duality in generalized complex geometry which we propose as a manifestation of mirror symmetry. Let M be an n−dimensional smooth real manifold, V a rank n real vector bundle on M , and ∇ a flat connection on V . We define the notion of a ∇−semi-flat generalized complex structure on the total space of V . We show that there is an explicit bijective correspondence between ∇−semi-flat generalized complex structures on the total space of V and ∇−semi-flat generalized complex structures on the total space of V . Similarly we define semi-flat generalized complex structures on real n−torus bundles with section over an n-dimensional base and establish a similar bijective correspondence between semi-flat generalized complex structures on pair of dual torus bundles. Along the way, we give methods of constructing generalized complex structures on the total spaces of vector bundles and torus bundles with sections. We also show that semi-flat generalized complex structures give rise to a pair of transverse Dirac structures on the base manifold. We give interpretations of these results in terms of relationships between the cohomology of torus bundles and their duals. We also study the ways in which our results generalize some well established aspects of mirror symmetry as well as some recent proposals relating generalized complex geometry to string theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)

In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...

متن کامل

Isotropic A-branes and the stability condition

The existence of a new kind of branes for the open topological A-model is argued by using the generalized complex geometry of Hitchin and the SYZ picture of mirror symmetry. Mirror symmetry suggests to consider a bi-vector in the normal direction of the brane and a new definition of generalized complex submanifold. Using this definition, it is shown that there exists generalized complex submani...

متن کامل

Generalized Calabi - Yau Manifolds and the Mirror of a Rigid Manifold

The Z manifold is a Calabi–Yau manifold with b 21 = 0. At first sight it seems to provide a counter example to the mirror hypothesis since its mirror would have b 11 = 0 and hence could not be Kähler. However by identifying the Z manifold with the Gepner model 1 9 we are able to ascribe a geometrical interpretation to the mirror, ˜ Z, as a certain seven-dimensional manifold. The mirror manifold...

متن کامل

Mirror Symmetry in Generalized Calabi–Yau Compactifications

We discuss mirror symmetry in generalized Calabi–Yau compactifications of type II string theories with background NS fluxes. Starting from type IIB compactified on Calabi– Yau threefolds with NS three-form flux we show that the mirror type IIA theory arises from a purely geometrical compactification on a different class of six-manifolds. These mirror manifolds have SU(3) structure and are terme...

متن کامل

Mirror Symmetry for hyperkähler manifolds

We prove the Mirror Conjecture for Calabi-Yau manifolds equipped with a holomorphic symplectic form, also known as complex manifolds of hyperkähler type. We obtain that a complex manifold of hyperkähler type is mirror dual to itself. The Mirror Conjecture is stated (following Kontsevich, ICM talk) as the equivalence of certain algebraic structures related to variations of Hodge structures. We c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004