NF90 Binds the Dengue Virus RNA 3′ Terminus and Is a Positive Regulator of Dengue Virus Replication
نویسندگان
چکیده
BACKGROUND Viral RNA translation and replication are regulated by sequence and structural elements in the 5' and 3' untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5' m7GpppG cap, and a conserved 3'-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3' terminus. METHODOLOGY/PRINCIPAL FINDINGS Proteins eluted from a dengue 3' SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. CONCLUSIONS/SIGNIFICANCE The results indicate that NF90 interacts with the 3' SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.
منابع مشابه
LSm1 binds to the Dengue virus RNA 3' UTR and is a positive regulator of Dengue virus replication.
Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans. The DENV positive strand RNA genome contains 5' and 3' untranslated regions (UTRs) that have been shown to be required for virus replication and interaction with host cell proteins. In the present study LSm1 was identified as a host cellular protein involved in DENV RNA replication. By using two in...
متن کاملDengue virus type-3 envelope protein domain III; expression and immunogenicity
Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...
متن کاملCharacterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: A study in Khyber Pakhtunkhwa, Pakistan
Dengue is a vector-borne disease caused by dengue virus. According to the recent report of CDC that one-third population of the world are at high risk with Dengue fever. The prevalence of the dengue hemorrhagic fever was found more in tropical and sub-tropical regions of the world. Aedes mosquitoes was reported as the main cause of transmission of dengue virus. So the current study was planned ...
متن کاملDengue Fever Serology in Febrile Patients in Southeast Iran
Background: Dengue is a mosquito-borne viral disease that has rapidly spread in all regions in recent years. There is little information on dengue fever epidemiology in Iran. High prevalence of dengue fever in Pakistan bordering southeast Iran emphasizes the need for paying more attention to monitoring of the disease in this region. The aim of this study was to study the dengue...
متن کاملDetection of dengue virus replication in peripheral blood mononuclear cells from dengue virus type 2-infected patients by a reverse transcription-real-time PCR assay.
While dengue virus is thought to replicate in mononuclear phagocytic cells in vivo, attempts to detect it in peripheral blood mononuclear cells (PBMC) by virus isolation or antigen detection have had variable and generally low rates. In this study, we developed a reverse transcription (RT)-real-time PCR assay to quantify positive- and negative-sense RNA of dengue virus type 2 within the cells. ...
متن کامل