Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
نویسندگان
چکیده
Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated in situ reduction of Au(3+) in the presence of a BC hydrogel at 303 K. Both the size and morphology of the AuNPs were functions of the HAuCl4 and citrate concentrations. At high HAuCl4 concentrations, Au nanoplates form within the nanocomposites and are responsible for high SERS enhancements. At lower HAuCl4 concentrations, uniform nanospheres form and the SERS enhancement is dependent on the nanosphere size. The time-resolved increase in the SERS signal was probed as a function of drying time with SERS 'hot-spots' primarily forming in the final minutes of nanocomposite drying. The application of the AuNP/BC nanocomposites for detection of the SERS active dyes MGITC and R6G as well as the environmental contaminant atrazine is illustrated as is its use under low and high pH conditions. The results indicate the broad applicability of this nanocomposite for analyte detection.
منابع مشابه
Supporting Information for "Preparation and Evaluation of Nanocellulose-Gold Nanoparticle Nanocomposites for SERS Applications"
Haoran Wei,1,2,3 Katia Rodriguez,2,4 Scott Renneckar,2,4 Weinan Leng,1,2,3 and Peter J. Vikesland1,2,3* 1Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 2Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 3Center for the Environmental Implications of Nanotechnology (CEI...
متن کاملCarbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing.
The facile assembly of three-dimensional (3D) plasmonic substrates has been demonstrated. The assembly is based on the homogeneous decoration of multi-walled carbon nanotube/gold nanoparticle (CNT/AuNP) hybrid nanocomposites on a commercial polyvinylidene difluoride (PVDF) membrane, which is achieved via simple filtration. The CNT/AuNP hybrids with a unique 1D/0D structure remarkably improve th...
متن کاملNanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
In this paper, we describe the formation of Au nanoparticle-graphene oxide (Au-GO) and -reduced GO (Au-rGO) composites by noncovalent attachment of Au nanoparticles premodified with 2-mercaptopyridine to GO and rGO sheets, respectively, viaπ-π stacking and other molecular interactions. Compared with in situ reduction of HAuCl4 on the surface of graphene sheets that are widely used to prepare Au...
متن کاملBio-gold Nanoparticle Synthesis by Metalophilic Bacterium Cupriavidus necator
Background and Aims: Gold nanoparticles have potential applications in the areas of medicine, target drug delivery, cancer diagnosis and therapy, electronic, etc. Recently, biological system is considered as an environmental friendly method for synthesis of stable nanoparticles. Methods: We demonstrated a biological system for formation of stable gold nanoparticle by using Cupriavidus necator w...
متن کاملOne-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection.
In this contribution, graphene oxide/gold nanoparticle (GO/AuNPs) hybrids were in situ fabricated through a green one-pot procedure by using tyrosine as an environment friendly and biocompatible reducing agent, which can be used as highly efficient surface enhanced Raman scattering (SERS) substrates with the enhancement factor at 3.8 × 10(3). The as-prepared GO/AuNPs hybrids have good biocompat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 140 16 شماره
صفحات -
تاریخ انتشار 2015