Matrix orthogonal polynomials whose derivatives are also orthogonal

نویسندگان

  • María José Cantero
  • Leandro Moral
  • Luis Velázquez
چکیده

In this paper we prove some characterizations of the matrix orthogonal polynomials whose derivatives are also orthogonal, which generalize other known ones in the scalar case. In particular, we prove that the corresponding orthogonality matrix functional is characterized by a Pearson-type equation with two matrix polynomials of degree not greater than 2 and 1. The proofs are given for a general sequence of matrix orthogonal polynomials, not necessarily associated with an hermitian functional. However, we give several examples of non-diagonalizable positive definite weight matrices satisfying a Pearson-type equation, which show that the previous results are non-trivial even in the positive definite case. A detailed analysis is made for the class of matrix functionals which satisfy a Pearson-type equation whose polynomial of degree not greater than 2 is scalar. We characterize the Pearson-type equations of this kind that yield a sequence of matrix orthogonal polynomials, and we prove that these matrix orthogonal polynomials satisfy a second order differential equation even in the non-hermitian case. Finally, we prove and improve a conjecture of Durán and Grünbaum concerning the triviality of this class in the positive definite case, while some examples show the non-triviality for hermitian functionals which are not positive definite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal matrix polynomials whose differences are also orthogonal

We characterize orthogonal matrix polynomials (Pn)n whose differences (∇ Pn+1)n are also orthogonal by means of a discrete Pearson equation for the weight matrix W with respect to which the polynomials (Pn)n are orthogonal. We also construct some illustrative examples. In particular, we show that contrary to what happens in the scalar case, in the matrix orthogonality the discrete Pearson equat...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

ORTHOGONAL ZERO INTERPOLANTS AND APPLICATIONS

Orthogonal zero interpolants (OZI) are polynomials which interpolate the “zero-function” at a finite number of pre-assigned nodes and satisfy orthogonality condition. OZI’s can be constructed by the 3-term recurrence relation. These interpolants are found useful in the solution of constrained approximation problems and in the structure of Gauss-type quadrature rules. We present some theoretical...

متن کامل

Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries

The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...

متن کامل

Bivariate Version of the Hahn-sonine Theorem

We consider orthogonal polynomials in two variables whose derivatives with respect to x are orthogonal. We show that they satisfy a system of partial differential equations of the form α(x, y)∂ x −→ Un + β(x, y)∂x −→ Un = Λn −→ Un, where degα ≤ 2, deg β ≤ 1, −→U n = (Un0, Un−1,1, · · · , U0n) is a vector of polynomials in x and y for n ≥ 0, and Λn is an eigenvalue matrix of order (n+ 1)× (n+ 1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2007