On Enhancing The Performance Of Nearest Neighbour Classifiers Using Hassanat Distance Metric
نویسندگان
چکیده
We showed in this work how the Hassanat distance metric enhances the performance of the nearest neighbour classifiers. The results demonstrate the superiority of this distance metric over the traditional and most-used distances, such as Manhattan distance and Euclidian distance. Moreover, we proved that the Hassanat distance metric is invariant to data scale, noise and outliers. Throughout this work, it is clearly notable that both ENN and IINC performed very well with the distance investigated, as their accuracy increased significantly by 3.3% and 3.1% respectively, with no significant advantage of the ENN over the IINC in terms of accuracy. Correspondingly, it can be noted from our results that there is no optimal algorithm that can solve all real-life problems perfectly; this is supported by the no-free-lunch theorem.
منابع مشابه
Multi-hypothesis nearest-neighbor classifier based on class-conditional weighted distance metric
The performance of nearest-neighbor (NN) classifiers is known to be very sensitive to the distance metric used in classifying a query pattern, especially in scarce-prototype cases. In this paper, a classconditional weighted (CCW) distance metric related to both the class labels of the prototypes and the query patterns is proposed. Compared with the existing distance metrics, the proposed metric...
متن کاملCreating diverse nearest-neighbour ensembles using simultaneous metaheuristic feature selection
The nearest-neighbour (1NN) classifier has long been used in pattern recognition, exploratory data analysis, and data mining problems. A vital consideration in obtaining good results with this technique is the choice of distance function, and correspondingly which features to consider when computing distances between samples. In recent years there has been an increasing interest in creating ens...
متن کاملSome improvements on NN based classifiers in metric spaces
The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...
متن کاملDistance and Similarity Measures Effect on the Performance of K-Nearest Neighbor Classifier - A Review
The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested example and the training examples. This raises a major question about which distance measures to be used for the KNN clas...
متن کاملDimensionality Invariant Similarity Measure
This paper presents a new similarity measure to be used for general tasks including supervised learning, which is represented by the K-nearest neighbor classifier (KNN). The proposed similarity measure is invariant to large differences in some dimensions in the feature space. The proposed metric is proved mathematically to be a metric. To test its viability for different applications, the KNN u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.00687 شماره
صفحات -
تاریخ انتشار 2015