Glycosidase inhibition: assessing mimicry of the transition state
نویسندگان
چکیده
Glycoside hydrolases, the enzymes responsible for hydrolysis of the glycosidic bond in di-, oligo- and polysaccharides, and glycoconjugates, are ubiquitous in Nature and fundamental to existence. The extreme stability of the glycosidic bond has meant these enzymes have evolved into highly proficient catalysts, with an estimated 10(17) fold rate enhancement over the uncatalysed reaction. Such rate enhancements mean that enzymes bind the substrate at the transition state with extraordinary affinity; the dissociation constant for the transition state is predicted to be 10(-22) M. Inhibition of glycoside hydrolases has widespread application in the treatment of viral infections, such as influenza and HIV, lysosomal storage disorders, cancer and diabetes. If inhibitors are designed to mimic the transition state, it should be possible to harness some of the transition state affinity, resulting in highly potent and specific drugs. Here we examine a number of glycosidase inhibitors which have been developed over the past half century, either by Nature or synthetically by man. A number of criteria have been proposed to ascertain which of these inhibitors are true transition state mimics, but these features have only be critically investigated in a very few cases.
منابع مشابه
Glycosidase mechanisms.
The three-dimensional structure of glycosidases and of their complexes and the study of transition-state mimics reveal structural details that correlate with mechanism. Of particular interest are the transition-state conformations harnessed by individual enzymes and the substrate distortion observed in enzyme-ligand complexes. 3D-structure in synergy with transition-state mimicry opens the way ...
متن کاملP105: Inhibition of Vasculogenic Mimicry in a Three-Dimensional Culture in Glioblastoma
Glioblastoma is one of the most common primary brain tumors (80% of patients) that has a poor prognosis due to malignancy. Glioblastoma has an annual incidence of 5.26 per 100 000 population or 17 000 new diagnoses per year and so as the population aging, the number of patients is expected to increase. There is a growing body of literature investigating the tumor microenvironmenta...
متن کاملStructural, thermodynamic, and kinetic analyses of tetrahydrooxazine-derived inhibitors bound to beta-glucosidases.
The understanding of transition state mimicry in glycoside hydrolysis is increasingly important both in the quest for novel specific therapeutic agents and for the deduction of enzyme function and mechanism. To aid comprehension, inhibitors can be characterized through kinetic, thermodynamic, and structural dissection to build an "inhibition profile." Here we dissect the binding of a tetrahydro...
متن کاملContribution of Shape and Charge to the Inhibition of a Family GH99 endo-α-1,2-Mannanase
Inhibitor design incorporating features of the reaction coordinate and transition-state structure has emerged as a powerful approach for the development of enzyme inhibitors. Such inhibitors find use as mechanistic probes, chemical biology tools, and therapeutics. Endo-α-1,2-mannosidases and endo-α-1,2-mannanases, members of glycoside hydrolase family 99 (GH99), are interesting targets for inhi...
متن کاملPhosphorylation of STAT3 Promotes Vasculogenic Mimicry by Inducing Epithelial-to-Mesenchymal Transition in Colorectal Cancer
Vasculogenic mimicry refers to the process by which highly invasive cancer cells mimic endothelial cells by forming blood channels. Vasculogenic mimicry is important for the invasion and metastasis of tumor cells in colorectal cancer. STAT3 was initially identified as a mediator of the inflammation-associated acute phase response. The phosphorylation of Signal Transducers and Activators of Tran...
متن کامل