Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal.
نویسندگان
چکیده
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and to classify them as visual, visuomovement, or movement cells with the use of the criteria described previously (Bruce and Goldberg 1985). The neurons were then studied by the use of double-step tasks that dissociated the retinal coordinates of visual targets from the dimensions of saccadic eye movements necessary to acquire those targets. These tasks required that the monkeys make two successive saccades to follow two sequentially flashed targets. Because the second target disappeared before the first saccade occurred, the dimensions of the second saccade could not be based solely on the retinal coordinates of the target but also depended on the dimensions of the first saccade. We used two versions of the double-step task. In one version neither target appeared in the cell's receptive or movement field, but the second eye movement was the optimum amplitude and direction for the cell (right-EM/wrong-RF task). In the other the second stimulus appeared in the cell's receptive field, but neither eye movement was appropriate for the cell (wrong-EM/right-RF task). 3. Most frontal-eye-field cells discharged in the right-EM/wrong-RF version of the double-step task. Their discharge began after the first saccade and continued until the second saccade was made. They usually discharged even on occasional trials in which the monkey failed to make the second saccade. They discharged much less, or not at all, in the wrong-EM/right-RF version of the double-step paradigm. Thus most presaccadic cells in the frontal eye fields were tuned to the dimensions of saccadic eye movements rather than to the coordinates of retinal stimulation. 4. Eleven movement cells (including 1 which also had independent postsaccadic activity for saccades opposite its presaccadic movement field) were studied, and all had significant activity in the right-EM/wrong-RF task. 5. Almost all (28/32) visuomovement cells, including 12 with independent postsaccadic activity, discharged in the right-EM/wrong-RF task. None of the four that failed had independent postsaccadic activity. 6. The majority (26/40) of visual cells were responsive in the right-EM/wrong-RF task.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
We examined, with event-related fMRI, two hypotheses about the organization of human working memory function in frontal cortex: (1) that a region immediately anterior to the frontal eye fields (FEF) (superior frontal cortex, SFC) is specialized for spatial working memory (Courtney, et al., 1998); and (2) that dorsolateral prefrontal cortex (PFC) plays a privileged role in the manipulation of sp...
متن کاملFunctional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans
The frontal and parietal eye fields serve as functional landmarks of the primate brain, although their correspondences between humans and macaque monkeys remain unclear. We conducted fMRI at 4.7 T in monkeys performing visually-guided saccade tasks and compared brain activations with those in humans using identical paradigms. Among multiple parietal activations, the dorsal lateral intraparietal...
متن کاملHow Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades Abbreviated Title: Frontal Cortex and Basal Ganglia Saccade Control
Acknowledgements J. Abstract How does the brain learn to balance between reactive and planned behaviors? The basal ganglia and frontal cortex together allow animals to learn planned behaviors that acquire rewards when prepotent reactive behaviors are insufficient. This paper proposes a new model, called TELOS, to explain how laminar circuitry of the frontal cortex, exemplified by the frontal ey...
متن کاملManipulation of object choice by electrical microstimulation in macaque frontal eye fields.
For each saccade, we select an object to direct gaze and to specify the direction and amplitude of eye movement. Although these 2 processes are inevitably interdependent when visual stimuli are held stationary, several lines of evidence suggest that the neuronal signals in the frontal eye fields (FEF) that underlie the selection of visual objects are distinct from those underlying the selection...
متن کاملVisual perception and corollary discharge.
Perception depends not only on sensory input but also on the state of the brain receiving that input. A classic example is perception of a stable visual world in spite of the saccadic eye movements that shift the images on the retina. A long-standing hypothesis is that the brain compensates for the disruption of visual input by using advance knowledge of the impending saccade, an internally gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 64 2 شماره
صفحات -
تاریخ انتشار 1990