Textual Entailment with Structured Attentions and Composition
نویسندگان
چکیده
Deep learning techniques are increasingly popular in the textual entailment task, overcoming the fragility of traditional discrete models with hard alignments and logics. In particular, the recently proposed attention models (Rocktäschel et al., 2015; Wang and Jiang, 2015) achieves state-of-the-art accuracy by computing soft word alignments between the premise and hypothesis sentences. However, there remains a major limitation: this line of work completely ignores syntax and recursion, which is helpful in many traditional efforts. We show that it is beneficial to extend the attention model to tree nodes between premise and hypothesis. More importantly, this subtree-level attention reveals information about entailment relation. We study the recursive composition of this subtree-level entailment relation, which can be viewed as a soft version of the Natural Logic framework (MacCartney and Manning, 2009). Experiments show that our structured attention and entailment composition model can correctly identify and infer entailment relations from the bottom up, and bring significant improvements in accuracy.
منابع مشابه
Approaching Textual Entailment with LFG and FrameNet Frames
We present a baseline system for modeling textual entailment that combines deep syntactic analysis with structured lexical meaning descriptions in the FrameNet paradigm. Textual entailment is approximated by degrees of structural and semantic overlap of text and hypothesis, which we measure in a match graph. The encoded measures of similarity are processed in a machine learning setting.1
متن کاملEntailment-based Question Answering for Structured Data
This paper describes a Question Answering system which retrieves answers from structured data regarding cinemas and movies. The system represents the first prototype of a multilingual and multimodal QA system for the domain of tourism. Based on specially designed domain ontology and using Textual Entailment as a means for semantic inference, the system can be used in both monolingual and cross-...
متن کاملThe Open University ’ s repository of research publications and other research outputs SVO triple based Latent Semantic Analysis for recognising textual entailment
Latent Semantic Analysis has only recently been applied to textual entailment recognition. However, these efforts have suffered from inadequate bag of words vector representations. Our prototype implementation for the Third Recognising Textual Entailment Challenge (RTE-3) improves the approach by applying it to vector representations that contain semi-structured representations of words. It use...
متن کاملSVO triple based Latent Semantic Analysis for recognising textual entailment
Latent Semantic Analysis has only recently been applied to textual entailment recognition. However, these efforts have suffered from inadequate bag of words vector representations. Our prototype implementation for the Third Recognising Textual Entailment Challenge (RTE-3) improves the approach by applying it to vector representations that contain semi-structured representations of words. It use...
متن کاملMost "babies" are "little" and most "problems" are "huge": Compositional Entailment in Adjective-Nouns
We examine adjective-noun (AN) composition in the task of recognizing textual entailment (RTE). We analyze behavior of ANs in large corpora and show that, despite conventional wisdom, adjectives do not always restrict the denotation of the nouns they modify. We use natural logic to characterize the variety of entailment relations that can result from AN composition. Predicting these relations d...
متن کامل