Hull number: P5-free graphs and reduction rules
نویسندگان
چکیده
In this paper, we study the (geodesic) hull number of graphs. For any two vertices u, v ∈ V of a connected undirected graph G = (V,E), the closed interval I[u, v] of u and v is the set of vertices that belong to some shortest (u, v)-path. For any S ⊆ V , let I[S] = ⋃ u,v∈S I[u, v]. A subset S ⊆ V is (geodesically) convex if I[S] = S. Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest convex set that contains S. We say that S is a hull set of G if Ih[S] = V . The size of a minimum hull set of G is the hull number of G, denoted by hn(G). First, we show a polynomial-time algorithm to compute the hull number of any P5-free triangle-free graph. Then, we present four reduction rules based on vertices with the same neighborhood. We use these reduction rules to propose a fixed parameter tractable algorithm to compute the hull number of any graph G, where the parameter can be the size of a vertex cover of G or, more generally, its neighborhood diversity, and we also use these reductions to characterize the hull number of the lexicographic product of any two graphs. Key-words: Graph Convexity, Hull Number, Geodesic Convexity, P5-free Graphs, Lexicographic Product, Parameterized Complexity, Neighborhood Diversity. ∗ This work was partly supported by ANR Blanc AGAPE ANR-09-BLAN-0159 and the INRIA/FUNCAP exchange program. † {julio.araujo, gregory.morel, leonardo.sampaio rocha, ronan.pardo soares}@inria.fr MASCOTTE Project, I3S (CNRS & UNS) and INRIA, INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex France. ‡ ParGO Research Group, Universidade Federal do Ceará, Campus do Pici, Bloco 910. 60455-760, Fortaleza, Ceará, Brazil. § Partially supported by CAPES/Brazil ¶ Partially supported by ANR Blanc AGAPE ANR-09-BLAN-0159. ‖ [email protected] / Grenoble-INP / UJF-Grenoble 1 / CNRS, GSCOP UMR5272 Grenoble, F-38031, France. ha l-0 07 24 12 0, v er si on 1 17 A ug 2 01 2 Nombre enveloppe : graphes sans P5 et règles de réduction Résumé : Dans cet article, nous étudions le nombre enveloppe (géodésique) des graphes. Pour deux sommets u et v ∈ V d’un graphe connexe non orienté G = (V,E), l’intervalle fermé I[u, v] de u et v est l’ensemble des sommets qui appartiennent à une plus courte châıne reliant u et v. Pour tout S ⊆ V , on note I[S] = ⋃ u,v∈S I[u, v]. Un sous-ensemble S ⊆ V est (géodésiquement) convexe si I[S] = S. Étant donné un sous-ensemble S ⊆ V , l’enveloppe convexe Ih[S] de S est le plus petit ensemble convexe qui contient S. On dit que S est un ensemble enveloppe de G si Ih[S] = V . La taille d’un ensemble enveloppe minimum de G est le nombre enveloppe de G, noté hn(G). Tout d’abord, nous donnons un algorithme polynomial pour calculer le nombre enveloppe d’un graphe sans P5 et sans triangle. Ensuite, nous présentons quatre règles de réductions basées sur des sommets ayant même voisinage. Nous utilisons ces règles de réduction pour proposer un algorithme FPT pour calculer le nombre enveloppe de n’importe quel graphe G, ou le paramètre peut être la taille d’un transversal de G ou, plus généralement sa diversité de voisinage ; nous utilisons également ces règles pour caractériser le nombre enveloppe du produit lexicographique de deux graphes. Mots-clés : Convexité dans les graphes, Nombre enveloppe, Convexité géodésique, Graphes sans P5, Produit lexicographique, Complexité paramétrée, Diversité de voisinage. ha l-0 07 24 12 0, v er si on 1 17 A ug 2 01 2 Hull number: P5-free graphs and reduction rules. 3
منابع مشابه
On (P5, diamond)-free graphs
We study the stability number, chromatic number and clique cover of graphs with no induced P5 and diamonds. In particular, we provide a way to obtain all imperfect (P5, diamond)-free graphs by iterated point multiplication or substitution from a /nite collection of small basic graphs. Corollaries of this and other structural properties, among which a result of Bacs1 o and Tuza, are (i) combinat...
متن کاملPolynomial Cases for the Vertex Coloring Problem
The computational complexity of the Vertex Coloring problem is known for all hereditary classes of graphs defined by forbidding two connected five-vertex induced subgraphs, except for seven cases. We prove the polynomial-time solvability of four of these problems: for (P5, dart)-free graphs, (P5, banner)-free graphs, (P5, bull)-free graphs, and (fork, bull)-free graphs.
متن کاملGraphs Without Induced
Zverovich [Discuss. Math. Graph Theory 23 (2003), 159–162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P5 and C5. Here we show (with an independent proof) that the following stronger result is also valid: Every P5-free and C5-free connected graph contains a minimum-size dominating set that induces a complete subgraph.
متن کاملOn mirror nodes in graphs without long induced paths
The notion of mirror nodes, first introduced by Fomin, Grandoni and Kratsch in 2006, turned out to be a useful item for their design of an algorithm for the maximum independent set problem (MIS). Given two nodes u, v of a graph G = (V, E) with distG(u, v) = 2, u is called a mirror of v if N(v) \N(u) induces a (possibly empty) clique. In order to have a well defined term, we add that every compl...
متن کاملThe Price of Connectivity for Vertex Cover: Perfect, Near-Perfect and Critical Graphs
In this paper we investigate the ratio of the connected vertex cover number to the vertex cover number in graphs, called the Price of Connectivity (PoC). For general graphs, this ratio is strictly bounded by 2. We prove that for every (P5, C5, C4)-free graph the ratio equals 1. We prove also that for every (P5, C4)-free graph the ratio is bounded by 4/3 and that for every (P7, C6,∆1,∆2)-free gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 44 شماره
صفحات -
تاریخ انتشار 2013