Uniform Growth of Sub-5-Nanometer High-κ Dielectrics on MoS2 Using Plasma-Enhanced Atomic Layer Deposition.
نویسندگان
چکیده
Regardless of the application, MoS2 requires encapsulation or passivation with a high-quality dielectric, whether as an integral aspect of the device (as with top-gated field-effect transistors (FETs)) or for protection from ambient conditions. However, the chemically inert surface of MoS2 prevents uniform growth of a dielectric film using atomic layer deposition (ALD)-the most controlled synthesis technique. In this work, we show that a plasma-enhanced ALD (PEALD) process, compared to traditional thermal ALD, substantially improves nucleation on MoS2 without hampering its electrical performance, and enables uniform growth of high-κ dielectrics to sub-5 nm thicknesses. Substrate-gated MoS2 FETs were studied before/after ALD and PEALD of Al2O3 and HfO2, indicating the impact of various growth conditions on MoS2 properties, with PEALD of HfO2 proving to be most favorable. Top-gated FETs with high-κ films as thin as ∼3.5 nm yielded robust performance with low leakage current and strong gate control. Mechanisms for the dramatic nucleation improvement and impact of PEALD on the MoS2 crystal structure were explored by X-ray photoelectron spectroscopy (XPS). In addition to providing a detailed analysis of the benefits of PEALD versus ALD on MoS2, this work reveals a straightforward approach for realizing ultrathin films of device-quality high-κ dielectrics on 2D crystals without the use of additional nucleation layers or damage to the electrical performance.
منابع مشابه
Direct Deposition of Uniform High-κ Dielectrics on Graphene
High quality High-κ dielectrics on graphene were achieved by atomic layer deposition directly using remote oxygen plasma surface pretreatment. The uniform coverage on graphene is illustrated by atomic force microscopy and confirmed by high resolution transmission microscopy. The possible surface lattice damage induced by plasma is limited and demonstrated by Raman spectra. The excellent Hall mo...
متن کاملEnhanced transport and transistor performance with oxide seeded high-κ gate dielectrics on wafer-scale epitaxial graphene.
We explore the effect of high-κ dielectric seed layer and overlayer on carrier transport in epitaxial graphene. We introduce a novel seeding technique for depositing dielectrics by atomic layer deposition that utilizes direct deposition of high-κ seed layers and can lead to an increase in Hall mobility up to 70% from as-grown. Additionally, high-κ seeded dielectrics are shown to produce superio...
متن کاملImproved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer
Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical...
متن کاملEvaluation of Vapor Deposition Techniques for Membrane Pore Size Modification
The suitability of three vapor deposition techniques for pore size modification was evaluated using polycarbonate track etched membranes as model supports. A feature scale model was employed to predict the pore geometry after modification and the resulting pure water flux. Physical vapor deposition (PVD) and pulsed plasma-enhanced chemical vapor deposition (PECVD), naturally, form asymmetric na...
متن کاملALD metal-gate/high-κ gate stack for Si and Si0.7Ge0.3 surface-channel pMOSFETs
ALD high-κ dielectrics and TiN metal-gate were successfully incorporated in both Si and Si0.7Ge0.3 surface-channel pMOSFETs. The high-κ gate dielectrics used included Al2O3 /HfAlOx /Al2O3, Al2O3 /HfO2 /Al2O3 and Al2O3. The Si transistors with Al2O3 /HfAlOx /Al2O3 showed a sub-threshold slope of 75 mV/dec. and a density of interface states of 3×10 cmeV. No obvious degradation of the Si channel h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 9 27 شماره
صفحات -
تاریخ انتشار 2017