0 D ec 1 99 9 Calogero - Moser systems and Hitchin systems

نویسندگان

  • J. C. Hurtubise
  • E. Markman
چکیده

We exhibit the elliptic Calogero-Moser system as a Hitchin system of G-principal Higgs pairs. The group G, though naturally associated to any root system, is not semi-simple. We then interpret the Lax pairs with spectral parameter of [dP1] and [BSC1] in terms of equivariant embeddings of the Hitchin system of G into that of GL(N).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hitchin Systems - symplectic maps and two - dimensional version

The aim of this paper is two fold. First, we define symplectic maps between Hitchin systems related to holomorphic bundles of different degrees. It allows to construct the Bäcklund transformations in the Hitchin systems defined over Riemann curves with marked points. We apply the general scheme to the elliptic Calogero-Moser (CM) system and construct the symplectic map to an integrable SL(N, C)...

متن کامل

Large N Limit of Integrable Models

We consider a large N limit of the Hitchin type integrable systems. The first system is the elliptic rotator on GLN that corresponds to the Higgs bundle of degree one over an elliptic curve with a marked point. This system is gauge equivalent to the N -body elliptic Calogero-Moser system, that is derived from the Higgs bundle of degree zero over the same curve. The large N limit of the former s...

متن کامل

ar X iv : m at h - ph / 9 91 00 38 v 1 2 5 O ct 1 99 9 ALGEBRAICALLY LINEARIZABLE DYNAMICAL SYSTEMS

The main result of this paper is the evidence of an explicit linearization of dynamical systems of Ruijsenaars-Schneider (RS) type and of the perturbations introduced by F. Calogero of these systems with all orbits periodic of same period. Several other systems share the existence of this explicit lineariza-tion, among them, the Calogero-Moser system (with and without external potential) and th...

متن کامل

Holomorphic Bundles and Many-body Systems

We show that spin generalization of elliptic Calogero-Moser system, elliptic extension of Gaudin model and their cousins can be treated as a degenerations of Hitchin systems. Applications to the constructions of integrals of motion, angle-action variables and quantum systems are discussed. The constructions are motivated by the Conformal Field Theory, and their quantum counterpart can be treate...

متن کامل

Hilbert Schemes , Separated Variables , and D -

We explain Sklyanin's separation of variables in geometrical terms and construct it for Hitchin and Mukai integrable systems. We construct Hilbert schemes of points on T * Σ for Σ = C, C * or elliptic curve, and on C 2 /Γ and show that their complex deformations are integrable systems of Calogero-Sutherland-Moser type. We present the hyperkähler quotient constructions for Hilbert schemes of poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999