Factors controlling the evaporation of secondary organic aerosol from α‐pinene ozonolysis
نویسندگان
چکیده
Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α-pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.
منابع مشابه
Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?
[1] This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from a-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SO...
متن کاملDimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to...
متن کاملReal refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene
Thermodenuding particles can provide insights into aerosol composition and may be a way to create particles in laboratory chambers that better mimic the atmosphere. The relative volatility of secondary organic aerosol (SOA) was investigated by evaporating organics from the particles using a thermodenuder (TD) at temperatures between ∼ 60 and 100 C. Volatility was influenced by the parent hydroc...
متن کاملA qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2
The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, 1-carene, and limonene was investigated using a dark flowthrough reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first-generation gasphase chemistry suggests that differences in observed aerosol yie...
متن کاملOzonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction
Existing parameterizations tend to underpredict the α-pinene aerosol mass fraction (AMF) or yield by a factor of 2–5 at low organic aerosol concentrations (<5μg m−3). A wide range of smog chamber results obtained at various conditions (low/high NOx, presence/absence of UV radiation, dry/humid conditions, and temperatures ranging from 15–40C) collected by various research teams during the last d...
متن کامل