Nanoprecipitation of polymeric nanoparticle micelles based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), for intracellular delivery applications
نویسندگان
چکیده
Biodistribution of nanoparticle-based intracellular delivery systems is mediated primarily by particle size and physicochemical properties. As such, overcoming the rapid removal of these by the reticuloendothelial system remains a significant challenge. To date, a number of copolymer nanoparticle systems based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), displaying biomimetic and pH responsive properties, have been published, however these have been predominately polymersome based, whilst micelle systems have remained relatively unexplored. This study utilised nanoprecipitation to investigate the effects of solvent and buffer choice upon micelle size and polydispersity, and found using methanol produced monodisperse micelles of circa 70 nm diameter, whilst ethanol produced polydisperse systems with nanoparticles of circa 128 nm diameter. The choice of aqueous buffer, dialysis of the systems, extended storage, and exposure to a wide temperature range (5-70 °C) had no significant effect on micelle size, and the systems were highly resistant to dilution, indicating excellent colloidal stability. Optimisation of the nanoprecipitation process, post precipitation, was investigated, and model drugs successfully loaded whilst maintaining system stability. Subsequent in vitro studies suggested that the micelles were of negligible cellular toxicity, and an apparent cellular uptake was observed via confocal laser scanning microscopy. This paper presents the first report of an optimised nanoprecipitation methodology for the formation of MPC-DPA nanoparticle micelles, and in doing so achieved monodisperse systems with the size and physicochemical characteristics seen as desirable for long circulating therapeutic delivery vehicles.
منابع مشابه
Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization
Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) (p ...
متن کاملNovel biomimetic polymersomes as polymer therapeutics for drug delivery.
Novel amphiphilic diblock copolymers, cholesterol-end-capped poly(2-methacryloyloxyethyl phosphorylcholine) (CMPC), which have poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) as hydrophilic segment and cholesterol as hydrophobic segment, was specially designed as drug delivery systems. Fluorescence probe technique and transmission electron microscope (TEM) characterizations indicated...
متن کاملSystematic design and application of unimolecular star-like block copolymer micelles: a coarse-grained simulation study.
Unimolecular polymeric micelles have several features, such as thermodynamic stability, small particle size, biocompatibility, and the ability to internalize hydrophobic molecules. These micelles have recently attracted significant attention in various applications, such as nano-reactors, catalysis, and drug delivery. However, few attempts have explored the formation mechanisms and conditions o...
متن کاملpH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL) Micelles with Fluorescence and Magnetic Resonance (MR) Dual Imaging Modalities and Drug Delivery Performance
The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers). Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL) micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR) dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA),...
متن کاملSelf-assembling dual component nanoparticles with endosomal escape capability.
This study reports a novel nanoparticle system with simple and modular one-step assembly, which can respond intelligently to biologically relevant variations in pH. Importantly, these particles also show the ability to induce escape from the endosomal/lysosomal compartments of the cell, which is integral to the design of efficient polymeric delivery systems. The nanoparticles were formed by the...
متن کامل