Texture segmentation using Gaussian-Markov random fields and neural oscillator networks
نویسندگان
چکیده
We propose an image segmentation method based on texture analysis. Our method is composed of two parts. The first part determines a novel set of texture features derived from a Gaussian-Markov random fields (GMRF) model. Unlike a GMRF-based approach, our method does not employ model parameters as features or require the extraction of features for a fixed set of texture types a priori. The second part is a 2D array of locally excitatory globally inhibitory oscillator networks (LEGION). After being filtered for noise suppression, features are used to determine the local couplings in the network. When LEGION runs, the oscillators corresponding to the same texture tend to synchronize, whereas different texture regions tend to correspond to distinct phases. In simulations, a large system of differential equations is solved for the first time using a recently proposed method for integrating relaxation oscillator networks. We provide results on real texture images to demonstrate the performance of our method.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملA NEW METHOD FOR MULTI−RESOLUTION TEXTURE SEGMENTATION USING GAUSSIAN MARKOV RANDOM FIELDS (MonPmOR2)
A new approach to multi−resolution modeling of images is introduced and applied to the task of semi−unsupervised texture segmentation using Gaussian Markov random fields (GMRFs). It is shown that traditional GMRF modeling of multi−resolution coefficients is incapable of accounting for the non−Gaussian statistics which often characterize the multi−resolution coefficients. On the other hand, the ...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2001