Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons.

نویسندگان

  • C Dehay
  • P Savatier
  • V Cortay
  • H Kennedy
چکیده

Thalamic afferents are known to exert a control over the differentiation of cortical areas at late stages of development. Here, we show that thalamic afferents also influence early stages of corticogenesis at the level of the ventricular zone. Using an in vitro approach, we show that embryonic day 14 mouse thalamic axons release a diffusable factor that promotes the proliferation of cortical precursors over a restricted developmental window. The thalamic mitogenic effect on cortical precursors (1) shortens the total cell-cycle duration via a reduction of the G(1) phase; (2) facilitates the G(1)/S transition leading to an increase in proliferative divisions; (3) is significantly reduced by antibodies directed against bFGF; and (4) influences the proliferation of both glial and neuronal precursors and does not preclude the action of signals that induce differentiation in these two lineages. We have related these in vitro findings to the in vivo condition: the organotypic culture of cortical explants in which anatomical thalamocortical innervation is preserved shows significantly increased proliferation rates compared with cortical explants devoid of subcortical afferents. These results are in line with a number of studies at subcortical levels showing the control of neurogenesis via afferent fibers in both vertebrates and invertebrates. Specifically, they indicate the mechanisms whereby embryonic thalamic afferents contribute to the known early regionalization of the ventricular zone, which plays a major role in the specification of neocortical areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of factors regulating lamina-specific growth of thalamocortical axons.

During development, most thalamocortical axons extend through the deep layers to terminate in layer 4 of neocortex. To elucidate the molecular mechanisms that underlie the formation of layer-specific thalamocortical projections, axon outgrowth from embryonic rat thalamus onto postnatal neocortical slices which had been fixed chemically was used as an experimental model system. When the thalamic...

متن کامل

Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex.

The recent discovery of short neural precursors (SNPs) in the murine neocortical ventricular zone (VZ) challenges the widely held view that radial glial cells (RGCs) are the sole occupants of this germinal compartment and suggests that precursor variety is an important factor of brain development. Here, we use in utero electroporation and genetic fate mapping to show that SNPs and RGCs cohabit ...

متن کامل

Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation.

Thalamic innervation of each neocortical area is vital to cortical function, but the developmental strategies that guide axons to specific areas remain unclear. We took a new approach to determine the contribution of intracortical cues. The cortical patterning molecule fibroblast growth factor 8 (FGF8) was misexpressed in the cortical primordium to rearrange the area map. Thalamic axons faithfu...

متن کامل

Generation of thalamic neurons from mouse embryonic stem cells.

The thalamus is a diencephalic structure that plays crucial roles in relaying and modulating sensory and motor information to the neocortex. The thalamus develops in the dorsal part of the neural tube at the level of the caudal forebrain. However, the molecular mechanisms that are essential for thalamic differentiation are still unknown. Here, we have succeeded in generating thalamic neurons fr...

متن کامل

Commentary: Coordinating Thalamocortical Connections and Interneuron Migration in the Mammalian Cortex: Role of the Intermediates

During embryogenesis, thalamocortical axons (TCAs) organize themselves in defined bundles that follow a unique pathway crossing several anatomical boundaries, which makes them easy to track during different stages of neocortical development. These features render TCAs notoriety as a model to study the extrinsic cues that regulate axon guidance and elongation in vertebrate systems. Amid neocorti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2001