Essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas.
نویسندگان
چکیده
DNA cytosine methylation is an epigenetic modification involved in the transcriptional repression of genes controlling a variety of physiological processes, including hematopoiesis. DNA methyltransferase 1 (Dnmt1) is a key enzyme involved in the somatic inheritance of DNA methylation and thus plays a critical role in epigenomic stability. Aberrant methylation contributes to the pathogenesis of human cancer and of hematologic malignancies in particular. To gain deeper insight into the function of Dnmt1 in lymphoid malignancies, we genetically inactivated Dnmt1 in a mouse model of MYC-induced T-cell lymphomagenesis. We show that loss of Dnmt1 delays lymphomagenesis by suppressing normal hematopoiesis and impairing tumor cell proliferation. Acute inactivation of Dnmt1 in primary lymphoma cells rapidly induced apoptosis, indicating that Dnmt1 is required to sustain T-cell lymphomas. Using high-resolution genome-wide profiling, we identified differentially methylated regions between control and Dnmt1-deficient lymphomas, demonstrating a locus-specific function for Dnmt1 in both maintenance and de novo promoter methylation. Dnmt1 activity is independent of the presence of Dnmt3a or Dnmt3b in de novo promoter methylation of the H2-Ab1 gene. Collectively, these data show for the first time that Dnmt1 is critical for the prevention and maintenance of T-cell lymphomas and contributes to aberrant methylation by both de novo and maintenance methylation.
منابع مشابه
Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملEffect of Curcumin and Trichostatin A on the Expression of DNA Methyltransfrase 1 in Hepatocellular Carcinoma Cell Line Hepa 1-6
Background: Hepatocellular carcinoma (HCC), primary liver cancer, is a major health problem and the third most common cause of cancer-related deaths worldwide. Epigenetic modulations are essential for the maintenance of gene expression patterns in mammals. Disruption of these processes can lead to silenced gene and malignant cellular transformation. The current study was designed to compare the...
متن کاملThe Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to o...
متن کاملDNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma
Aberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the MYC oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance. By utilizing ...
متن کاملThe mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas
The oncogenic transcription factor Myc is required for the progression and maintenance of diverse tumors. This has led to the concept that Myc itself, Myc-activated gene products, or associated biological processes might constitute prime targets for cancer therapy. Here, we present an in vivo reverse-genetic screen targeting a set of 241 Myc-activated mRNAs in mouse B-cell lymphomas, unraveling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2013