Approximation accuracy, gradient methods, and error bound for structured convex optimization
نویسنده
چکیده
Convex optimization problems arising in applications, possibly as approximations of intractable problems, are often structured and large scale. When the data are noisy, it is of interest to bound the solution error relative to the (unknown) solution of the original noiseless problem. Related to this is an error bound for the linear convergence analysis of first-order gradient methods for solving these problems. Example applications include compressed sensing, variable selection in regression, TV-regularized image denoising, and sensor network localization.
منابع مشابه
SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملNew Analysis of Linear Convergence of Gradient-type Methods via Unifying Error Bound Conditions
The subject of linear convergence of gradient-type methods on non-strongly convex optimization has been widely studied by introducing several notions as sufficient conditions. Influential examples include the error bound property, the restricted strongly convex property, the quadratic growth property, and the KurdykaLojasiewicz property. In this paper, we first define a group of error bound con...
متن کاملConvergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
We consider the problem of optimizing the sum of a smooth convex function and a non-smooth convex function using proximal-gradient methods, where an error is present in the calculation of the gradient of the smooth term or in the proximity operator with respect to the non-smooth term. We show that both the basic proximal-gradient method and the accelerated proximal-gradient method achieve the s...
متن کاملNon-Asymptotic Convergence Analysis of Inexact Gradient Methods for Machine Learning Without Strong Convexity
Many recent applications in machine learning and data fitting call for the algorithmic solution of structured smooth convex optimization problems. Although the gradient descent method is a natural choice for this task, it requires exact gradient computations and hence can be inefficient when the problem size is large or the gradient is difficult to evaluate. Therefore, there has been much inter...
متن کاملConvergence Analysis of the Approximate Proximal Splitting Method for Non-Smooth Convex Optimization
Consider a class of convex minimization problems for which the objective function is the sum of a smooth convex function and a non-smooth convex regularity term. This class of problems includes several popular applications such as compressive sensing and sparse group LASSO. In this thesis, we introduce a general class of approximate proximal splitting (APS) methods for solving such minimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 125 شماره
صفحات -
تاریخ انتشار 2010