Learning Sparsely Used Overcomplete Dictionaries

نویسندگان

  • Alekh Agarwal
  • Anima Anandkumar
  • Prateek Jain
  • Praneeth Netrapalli
  • Rashish Tandon
چکیده

We consider the problem of learning sparsely used overcomplete dictionaries, where each observation is a sparse combination of elements from an unknown overcomplete dictionary. We establish exact recovery when the dictionary elements are mutually incoherent. Our method consists of a clustering-based initialization step, which provides an approximate estimate of the true dictionary with guaranteed accuracy. This estimate is then refined via an iterative algorithm with the following alternating steps: 1) estimation of the dictionary coefficients for each observation through l1 minimization, given the dictionary estimate, and 2) estimation of the dictionary elements through least squares, given the coefficient estimates. We establish that, under a set of sufficient conditions, our method converges at a linear rate to the true dictionary as well as the true coefficients for each observation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Recovery of Sparsely Used Overcomplete Dictionaries

We consider the problem of learning overcomplete dictionaries in the context of sparse coding, where each sample selects a sparse subset of dictionary elements. Our method consists of two stages, viz., initial estimation of the dictionary, and a clean-up phase involving estimation of the coefficient matrix, and re-estimation of the dictionary. We prove that our method exactly recovers both the ...

متن کامل

Overcomplete Dictionary Design by Empirical Risk Minimization

Recently, there have been a growing interest in application of sparse representation for inverse problems. Most studies concentrated in devising ways for sparsely representing a solution using a given prototype overcomplete dictionary. Very few studies have addressed the more challenging problem of construction of an optimal overcomplete dictionary, and even these were primarily devoted to the ...

متن کامل

Evolution-enhanced multiscale overcomplete dictionaries learning for image denoising

In this paper, a multiscale overcomplete dictionary learning approach is proposed for image denoising by exploiting the multiscale property and sparse representation of images. The images are firstly sparsely represented by a translation invariant dictionary and then the coefficients are denoised using some learned multiscale dictionaries. Dictionaries learning can be reduced to a non-convex l0...

متن کامل

Critical Points Of An Autoencoder Can Provably Recover Sparsely Used Overcomplete Dictionaries

In Dictionary Learning one is trying to recover incoherent matrices A∗ ∈ Rn×h (typically overcomplete and whose columns are assumed to be normalized) and sparse vectors x∗ ∈ R with a small support of size h for some 0 < p < 1 while being given access to observations y ∈ R where y = A∗x∗. In this work we undertake a rigorous analysis of the possibility that dictionary learning could be performed...

متن کامل

Entropy of Overcomplete Kernel Dictionaries

In signal analysis and synthesis, linear approximation theory considers a linear decomposition of any given signal in a set of atoms, collected into a so-called dictionary. Relevant sparse representations are obtained by relaxing the orthogonality condition of the atoms, yielding overcomplete dictionaries with an extended number of atoms. More generally than the linear decomposition, overcomple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014