Overview: Experimental studies of crystal nucleation: Metals and colloids.
نویسندگان
چکیده
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.
منابع مشابه
Length-scale dependent transport properties of colloidal and protein solutions for prediction of crystal nucleation rates.
We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10(-3)-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or e...
متن کاملQuantitative prediction of crystal-nucleation rates for spherical colloids: a computational approach.
This review discusses the recent progress that has been made in the application of computer simulations to study crystal nucleation in colloidal systems. We discuss the concept and the numerical methods that allow for a quantitative prediction of crystal-nucleation rates. The computed nucleation rates are predicted from first principles and can be directly compared with experiments. These techn...
متن کاملBreakdown of classical nucleation theory near isostructural phase transitions.
We report simulations of crystal nucleation in binary mixtures of hard spherical colloids with a size ratio of 1:10. The stable crystal phase of this system can be either dense or expanded. We find that, in the vicinity of the solid-solid critical point where the crystallites are highly compressible, small crystal nuclei are less dense than large nuclei. This phenomenon cannot be accounted for ...
متن کاملColloids as model systems for metals and alloys: a case study of crystallization.
Metallic systems are widely used as materials in daily human life. Their properties depend very much on the production route. In order to improve the production process and even develop novel materials a detailed knowledge of all physical processes involved in crystallization is mandatory. Atomic systems like metals are characterized by very high relaxation rates, which make direct investigatio...
متن کاملCrystal nucleation in the presence of a metastable critical point
Density functional theory is applied to the study of crystal nucleation in the presence of a metastable critical point. A phenomenological model for fluids with short range interactions is developed to study the influence of critical density fluctuations on the structure of the critical nucleus and the height of the barrier to nucleation. Our results show dramatic changes in the nature of cryst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 145 21 شماره
صفحات -
تاریخ انتشار 2016