Hamiltonian evolution and quantization for extremal black holes

نویسندگان

  • Claus Kiefer
  • Jorma Louko
چکیده

We present and contrast two distinct ways of including extremal black holes in a Lorentzian Hamiltonian quantization of spherically symmetric EinsteinMaxwell theory. First, we formulate the classical Hamiltonian dynamics with boundary conditions appropriate for extremal black holes only. The Hamiltonian contains no surface term at the internal infinity, for reasons related to the vanishing of the extremal hole surface gravity, and quantization yields a vanishing black hole entropy. Second, we give a Hamiltonian quantization that incorporates extremal black holes as a limiting case of nonextremal ones, and examine the classical limit in terms of wave packets. The spreading of the packets, even the ones centered about extremal black holes, is consistent with continuity of the entropy in the extremal limit, and thus with the BekensteinHawking entropy even for the extremal holes. The discussion takes place throughout within Lorentz-signature spacetimes. Pacs: 04.60.Ds, 04.60.Kz, 04.70.Dy, 04.20.Fy Typeset using REVTEX Electronic address: [email protected] Electronic address: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freiburg THEP-98/18 gr-qc/9809005 Hamiltonian evolution and quantization for extremal black holes

We present and contrast two distinct ways of including extremal black holes in a Lorentzian Hamiltonian quantization of spherically symmetric EinsteinMaxwell theory. First, we formulate the classical Hamiltonian dynamics with boundary conditions appropriate for extremal black holes only. The Hamiltonian contains no surface term at the internal infinity, for reasons related to the vanishing of t...

متن کامل

98 07 09 4 v 1 1 4 Ju l 1 99 8 Entropy of extremal black holes in asymptotically anti - de Sitter spacetime

Unlike the extremal Reissner-Nordström black hole in ordinary spacetime, the one in anti-de Sitter spacetime is a minimum of action and has zero entropy if quantization is carried out after extremaliza-tion. However, if extremalization is carried out after quantization, then the entropy is a quarter of the area as in the usual case. While the entropy of ordinary (non-extremal) black holes has b...

متن کامل

Entropy of Extremal Black Holes in Asymptotically Anti-de Sitter Spacetime

Unlike the extremal Reissner-Nordström black hole in ordinary spacetime, the one in anti-de Sitter spacetime is a minimum of action and has zero entropy if quantization is carried out after extremaliza-tion. However, if extremalization is carried out after quantization, then the entropy is a quarter of the area as in the usual case. While the entropy of ordinary (non-extremal) black holes has b...

متن کامل

Quasinormal Modes, Reduced Phase Space and Area Spectrum of Black Holes

Motivated by the recent interest in quantization of black hole area spectrum, we consider the area spectrum of Schwarzschild, BTZ, extremal Reissner-Nordström, near extremal Schwarzschild-de Sitter, and Kerr black holes. Based on the proposal by Bekenstein and others that the black hole area spectrum is discrete and equally spaced, we implement Kunstatter's method to derive the area spectrum fo...

متن کامل

Near Extremal Schwarzschild-de Sitter Black Hole Area Spectrum from Quasi-normal Modes

Using the quasi-normal modes frequency of near extremal Schwarzschild-de Sitter black holes, we obtain area and entropy spectrum for black hole horizon. By using Boher-Sommerfeld quantization for an adiabatic invariant I = ∫ dE ω(E) , which E is the energy of system and ω(E) is vibrational frequency, we leads to an equally spaced mass spectrum. In the other term we extend directly the Kunstatte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998