Non-Asymptotic Theory of Random Matrices

نویسنده

  • Yuji Nakatsukasa
چکیده

1 Definition The topic in this lecture is Subgaussian random variables. We start with the definition, and discuss some properties they hold. Definition 1 (Subgaussian random variables). A random variable X is subgaussian if ∃c, C such that P(|x| > t) ≤ Ce −ct 2 ∀t ≥ 0. (1) As the name suggests, the notion of subgaussian random variables is a generalization of Gaussian random variables. Both the following well known random variables are subgaussian random variables (r.v's): Example 2. The following are examples of subgaussian random variables. Let us recall Lecture 3. Using Lemma 6, definition (1) can be expressed equivalently in two other ways;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-asymptotic theory of random matrices: extreme singular values

The classical random matrix theory is mostly focused on asymptotic spectral properties of random matrices as their dimensions grow to infinity. At the same time many recent applications from convex geometry to functional analysis to information theory operate with random matrices in fixed dimensions. This survey addresses the non-asymptotic theory of extreme singular values of random matrices w...

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

Non-Asymptotic Theory of Random Matrices

We will estimate the size of a random process (X t) t∈T by the size of another (simpler) random process (Y t) t∈T. Define a Gaussian centered process to be when X t is a mean-zero random variable. For a random variable X

متن کامل

An Application of Random Matrix Theory: Asymptotic Capacity of Ergodic and Non-ergodic Multiantenna Channels

Random matrices have fascinated mathematicians and physicists since they were first introduced in mathematical statistics by Wishart in 1928. The landmark contributions of Wishart, Wigner and later Marc̆enko-Pastur (in 1967) were motivated to a large extent by practical problems. Nowadays, random matrices find applications in fields as diverse as the Riemann hypothesis, stochastic differential e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007