Gabor windows supported on [ - 1, 1] and dual windows with small support

نویسندگان

  • Ole Christensen
  • Hong Oh Kim
  • Rae Young Kim
چکیده

Consider a continuous function g ∈ L2(R) that is supported on [−1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter 0 < b < 2N 2N+1 for some N ∈ N. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [−N, N]. We also show that this result is optimal: indeed, if b > 2N 2N+1 then a dual window supported on [−N, N] does not exist. In the limit case b = 2N 2N+1 a dual window supported on [−N, N] might exist, but cannot be continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gabor Dual Spline Windows

An algorithm is presented for constructing dual Gabor window functions that are splines. The spline windows are supported in [−1, 1], with a knot at x = 0, and can be taken C smooth and symmetric. The translation and modulation parameters satisfy 0 < ab ≤ 1/2. The full range 0 < ab < 1 is handled by introducing an additional knot. Many explicit examples are found.

متن کامل

Gabor frames with reduced redundancy

(1) Department of Mathematics, Technical University of Denmark, Building 303, 2800 Lyngby, Denmark. (2) Department of Mathematical Sciences, KAIST, Daejeon, Korea. (3) Department of Mathematics, Yeungnam University, Gyeongsan-si,Korea. [email protected], [email protected], [email protected] This work was supported by the Korea Science and Engineering Foundation (KOSEF) Grant funded by th...

متن کامل

Multi-window Gabor Frames in Amalgam Spaces

We show that multi-window Gabor frames with windows in the Wiener algebra W (L∞, `) are Banach frames for all Wiener amalgam spaces. As a by-product of our results we prove the canonical dual of a Gabor frame with a continuous generator in the Wiener algebra also belongs to this space. Our proofs are mostly based on recent noncommutative versions of Wiener’s 1/f lemma.

متن کامل

Hyperbolic secants yield Gabor frames

We show that (g2, a, b) is a Gabor frame when a > 0, b > 0, ab < 1 and g2(t) = ( 1 2πγ) 1 2 (cosh πγt)−1 is a hyperbolic secant with scaling parameter γ > 0. This is accomplished by expressing the Zak transform of g2 in terms of the Zak transform of the Gaussian g1(t) = (2γ) 1 4 exp(−πγt2), together with an appropriate use of the Ron-Shen criterion for being a Gabor frame. As a side result it f...

متن کامل

A geometric construction of tight Gabor frames with multivariate compactly supported smooth windows

The geometry of fundamental domains of lattices was used by Han and Wang to construct multivariate Gabor frames for separable lattices. We build upon their results to obtain Gabor frames with smooth and compactly supported window functions. For this purpose we study pairs of lattices which have equal density and allow for a common compact and star-shaped fundamental domain. The results are then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012