The unlikely Carnot efficiency.
نویسندگان
چکیده
The efficiency of an heat engine is traditionally defined as the ratio of its average output work over its average input heat. Its highest possible value was discovered by Carnot in 1824 and is a cornerstone concept in thermodynamics. It led to the discovery of the second law and to the definition of the Kelvin temperature scale. Small-scale engines operate in the presence of highly fluctuating input and output energy fluxes. They are therefore much better characterized by fluctuating efficiencies. In this study, using the fluctuation theorem, we identify universal features of efficiency fluctuations. While the standard thermodynamic efficiency is, as expected, the most likely value, we find that the Carnot efficiency is, surprisingly, the least likely in the long time limit. Furthermore, the probability distribution for the efficiency assumes a universal scaling form when operating close-to-equilibrium. We illustrate our results analytically and numerically on two model systems.
منابع مشابه
Efficiency statistics at all times: Carnot limit at finite power.
We derive the statistics of the efficiency under the assumption that thermodynamic fluxes fluctuate with normal law, parametrizing it in terms of time, macroscopic efficiency, and a coupling parameter ζ. It has a peculiar behavior: no moments, one sub-, and one super-Carnot maxima corresponding to reverse operating regimes (engine or pump), the most probable efficiency decreasing in time. The l...
متن کاملJu l 2 00 3 Comment on : “ Sadi Carnot on Carnot ’ s theorem ”
Carnot established in 1824 that the efficiency ηC of reversible engines operating between a hot bath at absolute temperature Thot and a cold bath at temperature Tcold is equal to 1−Tcold/Thot. Carnot particularly considered air as a working fluid and small bath-temperature differences. Plugging into Carnot’s expression modern experimental values, exact agreement with modern Thermodynamics is fo...
متن کاملBrownian Carnot engine
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3-5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations in...
متن کاملMolecular kinetic analysis of a finite-time Carnot cycle
We study the efficiency at the maximal power ηmax of a finite-time Carnot cycle of a weakly interacting gas which we can regard as a nearly ideal gas. In several systems interacting with the hot and cold reservoirs of the temperatures Th and Tc, respectively, it is known that ηmax = 1− √ Tc/Th which is often called the Curzon-Ahlborn (CA) efficiency ηCA. For the first time numerical experiments...
متن کاملThe Myth of the high-efficiency external-combustion Stirling Engine
The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling engine effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014