Changes in protein synthesis during the adaptation of Bacillus subtilis to anaerobic growth conditions.
نویسندگان
چکیده
After a shift of Bacillus subtilis from aerobic to anaerobic growth conditions, nitrate ammonification and various fermentative processes replace oxygen-dependent respiration. Cell-free extracts prepared from wild-type B. subtilis and from mutants of the regulatory loci fnr and resDE grown under aerobic and various anaerobic conditions were compared by two-dimensional gel electrophoresis. Proteins involved in the adaptation process were identified by their N-terminal sequence. Induction of cytoplasmic lactate dehydrogenase (LctE) synthesis under anaerobic fermentative conditions was dependent on fnr and resDE. Anaerobic nitrate repression of LctE formation required fnr-mediated expression of narGHJI, encoding respiratory nitrate reductase. Anaerobic induction of the flavohaemoglobin Hmp required resDE and nitrite. The general anaerobic induction of ywfl, encoding a protein of unknown function, was modulated by resDE and fnr. The ywfl gene shares its upstream region with the pta gene, encoding the fermentative enzyme acetyl-CoA:orthophosphate acetyltransferase. Anaerobic repression of the synthesis of a potential membrane-associated NADH dehydrogenase (YjlD, Ndh), and anaerobic induction of fructose-1,6-bisphosphate aldolase (FbaA) and dehydrolipoamide dehydrogenase (PhdD, Lpd) formation, did not require fnr or resDE participation. Synthesis of glycerol kinase (GlpK) was decreased under anaerobic conditions. Finally, the effect of anaerobic stress induced by the immediate shift from aerobic to strictly anaerobic conditions was analysed. The induction of various systems for the utilization of alternative carbon sources such as inositol (IoIA, IoIG, IoIH, IoII), melibiose (MeIA) and 6-phospho-alpha-glucosides (GIvA) indicated a catabolite-response-like stress reaction.
منابع مشابه
Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth...
متن کاملGlobal gene expression profiles of Bacillus subtilis grown under anaerobic conditions.
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observ...
متن کاملCloning of the Gene Encoding M2e of Influenza Virus in B. subtilis
Background and Aims: The ectodomain of matrix protein of influenza virus is a weak immunogen that is highly conserved among all subtypes of influenza A virus. Tandem repeats of these genes along with linker were used to enhance immunogenicity of M2e protein and so it can be served as a universal vaccine in both humans and livestock. Materials and Methods: In this study, the sequences of extra-d...
متن کاملCharacterization of Bacillus subtilis hemN.
A recently cloned Bacillus subtilis open reading frame (hemN) upstream of the dnaK operon was identified as encoding a protein involved in oxygen-independent coproporphyrinogen III decarboxylation. B. subtilis hemN functionally complemented two Salmonella typhimurium hemF hemN double mutants under aerobic and anaerobic conditions. A B. subtilis hemN mutant accumulated coproporphyrinogen III onl...
متن کاملHighly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis.
Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 146 ( Pt 1) شماره
صفحات -
تاریخ انتشار 2000