An assessment of hydrocarbon species in the methanol-to-hydrocarbon reaction over a ZSM-5 catalyst.

نویسندگان

  • Suwardiyanto
  • Russell F Howe
  • Emma K Gibson
  • C Richard A Catlow
  • Ali Hameed
  • James McGregor
  • Paul Collier
  • Stewart F Parker
  • David Lennon
چکیده

A ZSM-5 catalyst is examined in relation to the methanol-to-hydrocarbon (MTH) reaction as a function of reaction temperature and time-on-stream. The reaction profile is characterised using in-line mass spectrometry. Furthermore, the material contained within a catch-pot downstream from the reactor is analysed using gas chromatography-mass spectrometry. For a fixed methanol feed, reaction conditions are selected to define various stages of the reaction coordinate: (i) initial methanol adsorption at a sub-optimum reaction temperature (1 h at 200 °C); (ii) initial stages of reaction at an optimised reaction temperature (1 h at 350 °C); (iii) steady-state operation at an optimised reaction temperature (3 days at 350 °C); and (iv) accelerated ageing (3 days at 400 °C). Post-reaction, the catalyst samples are analysed ex situ by a combination of temperature-programmed oxidation (TPO) and spectroscopically by electron paramagnetic resonance (EPR), diffuse-reflectance infrared and inelastic neutron scattering (INS) spectroscopies. The TPO measurements provide an indication of the degree of 'coking' experienced by each sample. The EPR measurements detect aromatic radical cations. The IR and INS measurements reveal the presence of retained hydrocarbonaceous species, the nature of which are discussed in terms of the well-developed 'hydrocarbon pool' mechanism. This combination of experimental evidence, uniquely applied to this reaction system, establishes the importance of retained hydrocarbonaceous species in effecting the product distribution of this economically relevant reaction system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Inelastic Neutron Scattering to the Methanol-to-Gasoline Reaction Over a ZSM-5 Catalyst

Inelastic neutron scattering (INS) is used to investigate a ZSM-5 catalyst that has been exposed to methanol vapour at elevated temperature. In-line mass spectrometric analysis of the catalyst exit stream confirms methanol-to-gasoline chemistry, whilst ex situ INS measurements detect hydrocarbon species formed in/on the catalyst during methanol conversion. These preliminary studies demonstrate ...

متن کامل

Methanol-to-Hydrocarbons Product Distribution over SAPO-34 and ZSM-5 Catalysts: The applicability of Thermodynamic Equilibrium and Anderson-Schulz-Flory Distribution

The product distribution of methanol to hydrocarbons conversion over SAPO-34 and ZSM-5 catalysts was studied using thermodynamic equilibrium and Anderson-Schulz-Flory (ASF) distributions. The equilibrium compositions were calculated using constrained Gibbs free energy minimization. The effect of catalyst type was considered by setting upper limits to product carbon number due to sh...

متن کامل

Vacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite

A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...

متن کامل

Two-level Full Factorial Design for Selectivity Modeling and Studying Simultaneous Effects of Temperature and Ethanol Concentration in Methanol Dehydration Reaction

Using surface analysis, simultaneous effects of temperature (260-380ºC) and ethanol concentration (0-1%) on dimethyl ether (DME) selectivity, yields of hydrocarbon and DME, and methanol conversion were investigated in methanol dehydration reaction over γ-Al2O3 catalyst. Methanol conversion and yield of hydrocarbon/DME were found to be significantly affected by temperature and the temperature-et...

متن کامل

Investigation of Methanol Reaction Chemistry on H-ZSM-5 and -11

In order to gain a better understanding of the chemistry of methanl-to-hydro-carbon conversion, it is necessary to determine the nature of the primary reaction products. Experiments carried out in this work on H-ZSM-11, using a continuous flow reactor linked to an on-line gas chromatograph demonstrated that ethylene and methane are the primary reaction products. The results obtained using s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 197  شماره 

صفحات  -

تاریخ انتشار 2017