Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa

نویسندگان

  • Rainald Schmidt-Kastner
  • Hideo Yamamoto
  • Duco Hamasaki
  • Hiroko Yamamoto
  • Jean-Marie Parel
  • Christoph Schmitz
  • C. Kathy Dorey
  • Janet C. Blanks
  • Markus N. Preising
چکیده

PURPOSE High oxygen consumption and cyclical changes related to dark-adaptation are characteristic of the outer retina. Oxygenation changes may contribute to the selective vulnerability of the retina in retinitis pigmentosa (RP) patients, especially for those forms involving genes with global cellular functions. Genes coding for components of the U4/U6.U5 tri small nuclear ribonucleoprotein (tri-snRNP) complex of the spliceosome stand out, because mutations in four genes cause RP, i.e., RP9 (PAP1), RP11 (PRPF31), RP13 (PRPF8), and RP18 (PRPF3), while there is no degeneration outside the retina despite global expression of these genes. With the assumption that variable oxygenation plays a role in RP forms related to pre-mRNA splicing and the retina and brain are similar, we searched a data collection of ischemia-hypoxia regulated genes of the brain for oxygen regulated genes of the U4/U6.U5 tri-snRNP complex. METHODS A database of ischemia-hypoxia response (IHR) genes in the brain was generated from gene expression profiling studies [n=24]. Public databases (NCBI) were searched for RP genes with global function that are expressed in the brain. From the IHR gene list, we extracted genes that were directly related to retinal degeneration through a listed mutation (OMIM, Retnet, RISN). The database was then examined for indirect links to RP forms affecting the U4/U6.U5 tri-snRNP complex by searching for IHR genes contributing to this complex. Potential expression of matched genes in the retina was ascertained using NEIBank. Immunohistochemistry was used to localize a selected protein of the U4/U6.U5 tri-snRNP complex in cynomolgus monkey and human retina specimens. RESULTS The approach identified genes that cause retinal degeneration (CNGB1, SEMA4A, RRG4) or developmental changes (SOX2) when mutated. One IHR gene, Pim1, is the immediate binding partner for PAP1 (RP9). Three IHR genes linked the U4/U6.U5 tri-snRNP complex to regulation by oxygenation: PRPF4; SART1, also known as 110 kDa SR-related protein of the U4/U6.U5 tri-snRNP or as hypoxia associated factor (HAF); and LSM8, U6 snRNA-associated Sm-like protein. The 110 kDa SR-related protein was localized in all retinal cells including photoreceptors. CONCLUSIONS Regulation by changes in oxygenation within the U4/U6.U5 tri-snRP complex could be particularly important for photoreceptors where oxygen consumption follows a circadian rhythm. If the U4/U6.U5 tri-snRP complex is already impaired by mutations in any of the four genes causing RP, it may be unable to follow properly the physiological demands of oxygenation which are mediated by the four hypoxia-regulated proteins emerging in this study. Selective vulnerability may involve complex combinations of widely expressed genes, specific cellular functions and local energy availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRPF4 mutations cause autosomal dominant retinitis pigmentosa.

Retinitis pigmentosa (RP), a disease characterized by progressive loss of photoreceptors, exhibits significant genetic heterogeneity. Several genes associated with U4/U6-U5 triple small nuclear ribonucleoprotein (tri-snRNP) complex of the spliceosome have been implicated in autosomal dominant RP (adRP). HPrp4, encoded by PRPF4, regulates the stability of U4/U6 di-snRNP, which is essential for c...

متن کامل

Knocking Down Snrnp200 Initiates Demorphogenesis of Rod Photoreceptors in Zebrafish

Purpose. The small nuclear ribonucleoprotein 200 kDa (SNRNP200) gene is a fundamental component for precursor message RNA (pre-mRNA) splicing and has been implicated in the etiology of autosomal dominant retinitis pigmentosa (adRP). This study aims to determine the consequences of knocking down Snrnp200 in zebrafish. Methods. Expression of the Snrnp200 transcript in zebrafish was determined via...

متن کامل

Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex.

Mutations in PRPF3, a gene encoding the essential pre-mRNA splicing factor Hprp3p, have been identified in patients with autosomal dominant retinitis pigmentosa type 18 (RP18). Patients with RP18 have one of two single amino acid substitutions, Pro493Ser or Thr494Met, at the highly conserved Hprp3p C-terminal region. Pro493Ser occurs sporadically, whereas Thr494Met is observed in several unlink...

متن کامل

Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles.

The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate t...

متن کامل

SPF30 is an essential human splicing factor required for assembly of the U4/U5/U6 tri-small nuclear ribonucleoprotein into the spliceosome.

Spliceosome assembly involves the sequential recruitment of small nuclear ribonucleoproteins (snRNPs) onto a pre-mRNA substrate. Although several non-snRNP proteins function during the binding of U1 and U2 snRNPs, little is known about the subsequent binding of the U4/U5/U6 tri-snRNP. A recent proteomic analysis of the human spliceosome identified SPF30 (Neubauer, G., King, A., Rappsilber, J., ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Vision

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008