The influence of cell membrane and SNAP25 linker loop on the dynamics and unzipping of SNARE complex

نویسندگان

  • Yi Shi
  • Yong Zhang
  • Jizhong Lou
چکیده

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is composed of three neuronal proteins VAMP2, Syntaxin and SNAP25, which plays a core role during the process of membrane fusion. The zipping assembly of the SNARE complex releases energies and drives the vesicle and cell membrane into close proximity. In this study, we use all-atom molecular dynamics simulations to probe the dynamics of SNARE and its unzipping process in the context of membrane at the atomistic details. Our results indicated that the NTD of SNARE core domain is relatively more stable than CTD, which is in agreement with previous experiments. More importantly, possible interactions between the linker loop (LL) region of SNAP25 and VAMP2 are observed, suggests that the LL region may facilitate VAMP2 binding and SNARE initiation. The forced unzipping of SNARE in the presence of membrane and LL of SNAP25 reveals the possible pathway for energy generation of SNARE zipping, provides information to understand how force may regulate the cooperativity between the membrane and the SNARE complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex.

The SNARE complex, consisting of three proteins (VAMP2, syntaxin, and SNAP-25), is thought to drive membrane fusion by assembling into a four-helix bundle through a zippering process. In support of the above zippering model, a recent single-molecule optical tweezers experiment by Gao et al. revealed a sequential unzipping of SNARE along VAMP2 in the order of the linker domain → the C-terminal d...

متن کامل

A second SNARE role for exocytic SNAP25 in endosome fusion.

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing ...

متن کامل

Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a.

SNARE proteins are required for intracellular membrane fusion. In the neuron, the plasma membrane SNAREs syntaxin 1a and SNAP25 bind to VAMP2 found on neurotransmitter-containing vesicles. These three proteins contain "SNARE regions" that mediate their association into stable tetrameric coiled-coil structures. Syntaxin 1a contributes one such region, designated H3, and SNAP25 contributes two SN...

متن کامل

Effect of resveratrol on SNARE proteins expression and insulin resistance in skeletal muscle of diabetic rats

Objective(s): Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex proteins are involved in membrane trafficking. The expression of isoforms of SNAP-23, syntaxin-4, and VAMP-2 is significantly done in skeletal muscles; they control GLUT4 trafficking. It is believed that type 2 diabetes could be caused by the modifications in the express...

متن کامل

Tracking SNARE complex formation in live endocrine cells.

Syntaxin, synaptosome-associated protein of 25 kD (SNAP25), and vesicle-associated membrane protein/synaptobrevin are collectively called SNAP receptor (SNARE) proteins, and they catalyze neuronal exocytosis by forming a "core complex." The steps in core complex formation are unknown. Here, we monitored SNARE complex formation in vivo with the use of a fluorescent version of SNAP25. In PC12 cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017