Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice.

نویسندگان

  • M S Deiner
  • D W Sretavan
چکیده

Optic nerve formation in mouse involves interactions between netrin-1 at the optic disk and the netrin-1 receptor DCC (deleted in colorectal cancer) expressed on retinal ganglion cell (RGC) axons. Deficiency in either protein causes RGC pathfinding defects at the disk leading to optic nerve hypoplasia (). Here we show that further along the visual pathway, RGC axons in netrin-1- or DCC-deficient mice grow in unusually angular trajectories within the ventral hypothalamus. In heterozygous Sey(neu) mice that also have a small optic nerve, RGC axon trajectories appear normal, indicating that the altered RGC axon trajectories in netrin-1 and DCC mutants are not secondarily caused by optic nerve hypoplasia. Intrinsic hypothalamic patterning is also affected in netrin-1 and DCC mutants, including a severe reduction in the posterior axon projections of gonadotropin-releasing hormone neurons. In addition to axon pathway defects, antidiuretic hormone and oxytocin neurons are found ectopically in the ventromedial hypothalamus, apparently no longer confined to the supraoptic nucleus in mutants. In summary, netrin-1 and DCC, presumably via direct interactions, govern both axon pathway formation and neuronal position during hypothalamic development, and loss of netrin-1 or DCC function affects both visual and neuroendocrine systems. Netrin protein localization also indicates that unlike in more caudal CNS, guidance about the hypothalamic ventral midline does not require midline expression of netrin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.

During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are prim...

متن کامل

Aberrant development of hippocampal circuits and altered neural activity in netrin 1-deficient mice.

Diffusible factors, including netrins and semaphorins, are believed to be important cues for the formation of neural circuits in the forebrain. Here we have examined the role of netrin 1 in the development of hippocampal connections. We show that netrin 1 and its receptor, Dcc, are expressed in the developing fimbria and in projection neurons, respectively, and that netrin 1 promotes the outgro...

متن کامل

Expression patterns of the netrin receptor UNC5H1 among developing motor neurons in the embryonic rat hindbrain

The axon guidance molecule netrin-1 has been implicated in the midline repulsion of developing cranial motor axons. We have examined expression patterns of the netrin receptors UNC5H1 and DCC in embryonic rat hindbrains, in combination with labelling of developing motor neurons. We found that UNC5H1 expression colocalised with a number of cranial motor neuron subpopulations from embryonic day 1...

متن کامل

Dscam guides embryonic axons by Netrin-dependent and -independent functions.

Developing axons are attracted to the CNS midline by Netrin proteins and other as yet unidentified signals. Netrin signals are transduced in part by Frazzled (Fra)/DCC receptors. Genetic analysis in Drosophila indicates that additional unidentified receptors are needed to mediate the attractive response to Netrin. Analysis of Bolwig's nerve reveals that Netrin mutants have a similar phenotype t...

متن کامل

Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate.

There is increasing evidence that heparan sulfate (HS) plays an essential role in various axon guidance processes. These observations, however, have not addressed whether HS is required cell autonomously as an axonal coreceptor or as an environmental factor that modulates the localization of guidance molecules in the terrain in which growing axons navigate. Here we demonstrate that netrin-1-med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 22  شماره 

صفحات  -

تاریخ انتشار 1999