Observer-Based H∞ Control for Stochastic Systems with Delays and Nonlinear Perturbations: LMI Approach ?

نویسندگان

  • An-Ke Xue
  • Yun Chen
  • Ke-Qin Zhang
  • Xiao-Dong Zhao
  • Jian-Zhong Wang
چکیده

This paper considers the problem of observer-based H∞ control for a class of Itôtype stochastic delay systems with nonlinear perturbations. An observer-based controller is constructed based on Lyapunov-Krasovskii approach, which guarantees the closed-loop system is robustly stochastically asymptotically stable in the mean square with prescribed H∞ disturbance attenuation level for all admissible nonlinear perturbations. Sufficient condition for the existence of desired controller is presented in terms of a strict linear matrix inequality (LMI) if the control matrix B is full column rank. A numerical example is provided to demonstrate the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions

In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Observer-Based Mixed H2/H∞ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach 1 Observer-Based Mixed H2/H∞ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach

Abstract: This paper presents a convex optimization method for observer-based mixed H2/H∞ control design of linear systems with time-varying state, input and output delays. Delaydependent sufficient conditions for the design of a desired observer-based control are given in terms of linear matrix inequalities (LMIs). An observer-based controller which guarantees asymptotic stability and a mixed ...

متن کامل

Delay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays

In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008