The Structure of Automorphic Loops

نویسنده

  • MICHAEL K. KINYON
چکیده

Automorphic loops are loops in which all inner mappings are automorphisms. This variety of loops includes, for instance, groups and commutative Moufang loops. We study uniquely 2-divisible automorphic loops, particularly automorphic loops of odd order, from the point of view of the associated Bruck loops (motivated by Glauberman’s work on uniquely 2-divisible Moufang loops) and the associated Lie rings (motivated by a construction of Wright). We prove that every automorphic loop Q of odd order is solvable, contains an element of order p for every prime p dividing |Q|, and |S| divides |Q| for every subloop S of Q. There are no finite simple nonassociative commutative automorphic loops, and there are no finite simple nonassociative automorphic loops of order less than 2500. We show that if Q is a finite simple nonassociative automorphic loop then the socle of the multiplication group of Q is not regular. The existence of a finite simple nonassociative automorphic loop remains open. Let p be an odd prime. Automorphic loops of order p or p are groups, but there exist nonassociative automorphic loops of order p, some with trivial nucleus (center) and of exponent p. We construct nonassociative “dihedral” automorphic loops of order 2n for every n > 2, and show that there are precisely p − 2 nonassociative automorphic loops of order 2p, all of them dihedral.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Free Automorphic Moufang Loops

We describe the structure of a free loop of rank n in the variety of automorphic Moufang loops as a subdirect product of a free group and a free commutative Moufang loop, both of rank n. In particular, the variety of automorphic Moufang loops is the join of the variety of groups and the variety of commutative Moufang loops.

متن کامل

Three Lectures On Automorphic Loops

These notes accompany a series of three lectures on automorphic loops to be delivered by the author at Workshops Loops ’15 (Ohrid, Macedonia, 2015). Automorphic loops are loops in which all inner mappings are automorphisms. The first paper on automorphic loops appeared in 1956 and there has been a surge of interest in the topic since 2010. The purpose of these notes is to introduce the methods ...

متن کامل

A Class of Loops Categorically Isomorphic to Uniquely 2-divisible Bruck Loops

We define a new variety of loops we call Γ-loops. After showing Γ-loops are power associative, our main goal will be showing a categorical isomorphism between uniquely 2-divisible Bruck loops and uniquely 2-divisible Γ-loops. Once this has been established, we can use the well known structure of Bruck loops of odd order to derive the Odd Order, Lagrange and Cauchy Theorems for Γ-loops of odd or...

متن کامل

An holomorphic study of Smarandache automorphic and cross inverse property loops

By studying the holomorphic structure of automorphic inverse property quasigroups and loops[AIPQ and (AIPL)] and cross inverse property quasigroups and loops[CIPQ and (CIPL)], it is established that the holomorph of a loop is a Smarandache; AIPL, CIPL, Kloop, Bruck-loop or Kikkawa-loop if and only if its Smarandache automorphism group is trivial and the loop is itself is a Smarandache; AIPL, CI...

متن کامل

Nilpotency in Automorphic Loops of Prime Power Order

A loop is automorphic if its inner mappings are automorphisms. Using socalled associated operations, we show that every commutative automorphic loop of odd prime power order is centrally nilpotent. Starting with suitable elements of an anisotropic plane in the vector space of 2 × 2 matrices over the field of prime order p, we construct a family of automorphic loops of order p with trivial center.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012