Bartonella henselae induces NF-kappaB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors.
نویسندگان
چکیده
The endothelium is a specific target for Bartonella henselae, and endothelial cell infection represents an important step in the pathogenesis of cat scratch disease and bacillary angiomatosis. Mechanisms of Bartonella-endothelial cell interaction as well as signaling pathways involved in target cell activation were analyzed. B. henselae strain Berlin-1, isolated from bacillary angiomatosis lesions of a human immunodeficiency virus-infected patient, potently stimulated human umbilical cord vein endothelial cells (HUVEC), as determined by NF-kappaB activation and enhanced adhesion molecule expression. These effects were accompanied by increased PMN rolling on and adhesion to infected endothelial cell monolayers, as measured in a parallel-plate flow chamber assay. Monoclonal antibodies against E-selectin significantly reduced PMN rolling and adhesion. In our hands, B. henselae Berlin-1 was substantially more active than the typing strain B. henselae ATCC 49882. E-selectin and ICAM-1 upregulation occurred for up to 9 days, as verified by Northern blotting and cell surface enzyme-linked immunosorbent assay. Induction of adhesion molecules was mediated via NF-kappaB activation and could be blocked by a specific NF-kappaB inhibitor. Additional studies indicated that B. henselae-induced effects did not require living bacteria or Bartonella lipopolysaccharides. Exposure of HUVEC to purified B. henselae outer membrane proteins (OMPs), however, reproduced all aspects of endothelial cell activation. In conclusion, B. henselae, the causative agent of cat scratch disease and bacillary angiomatosis, infects and activates endothelial cells. B. henselae OMPs are sufficient to induce NF-kappaB activation and adhesion molecule expression followed by enhanced rolling and adhesion of leukocytes. These observations identify important new properties of B. henselae, demonstrating its capacity to initiate a cascade of events culminating in a proinflammatory phenotype of infected endothelial cells.
منابع مشابه
Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells
Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...
متن کاملHypertonic mannitol loading of NF-kappaB transcription factor decoys in human brain microvascular endothelial cells blocks upregulation of ICAM-1.
BACKGROUND AND PURPOSE An acute inflammatory response exacerbates tissue injury during acute ischemic stroke. The transcription factor nuclear factor (NF)-kappaB plays a key role in endothelial cell activation and the inflammatory response. Targeted genetic disruption of NF-kappaB activation in cerebral endothelial cells may be protective in stroke. We determined whether a NF-kappaB transcripti...
متن کاملBartonella Adhesin A Mediates a Proangiogenic Host Cell Response
Bartonella henselae causes vasculoproliferative disorders in humans. We identified a nonfimbrial adhesin of B. henselae designated as Bartonella adhesin A (BadA). BadA is a 340-kD outer membrane protein encoded by the 9.3-kb badA gene. It has a modular structure and contains domains homologous to the Yersinia enterocolitica nonfimbrial adhesin (Yersinia adhesin A). Expression of BadA was restor...
متن کاملTrimeric autotransporter adhesin-dependent adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to matrix components and endothelial cells under static and dynamic flow conditions.
Trimeric autotransporter adhesins (TAAs) are important virulence factors of Gram-negative bacteria responsible for adherence to extracellular matrix (ECM) and host cells. Here, we analyzed three different TAAs (Bartonella adhesin A [BadA] of Bartonella henselae, variably expressed outer membrane proteins [Vomps] of Bartonella quintana, and Yersinia adhesin A [YadA] of Yersinia enterocolitica) f...
متن کاملCharacterization of an immunogenic outer membrane autotransporter protein, Arp, of Bartonella henselae.
Bartonella henselae is a recently recognized pathogenic bacterium associated with cat scratch disease, bacillary angiomatosis, and bacillary peliosis. This study describes the cloning, sequencing, and characterization of an antigenic autotransporter gene from B. henselae. A cloned 6.0-kb BclI-EcoRI DNA fragment expresses a 120-kDa B. henselae protein immunoreactive with 21.2% of sera from patie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 69 8 شماره
صفحات -
تاریخ انتشار 2001