A Topological Approach to Inverse and Regular Semigroups
نویسندگان
چکیده
Work of Ehresmann and Schein shows that an inverse semigroup can be viewed as a groupoid with an order structure; this approach was generalized by Nambooripad to apply to arbitrary regular semigroups. This paper introduces the notion of an ordered 2-complex and shows how to represent any ordered groupoid as the fundamental groupoid of an ordered 2-complex. This approach then allows us to construct a standard 2-complex for an inverse semigroup presentation. Our primary applications are to calculating the maximal subgroups of an inverse semigroup which, under our topological approach, turn out to be the fundamental groups of the various connected components of the standard 2-complex. Our main results generalize results of Haatja, Margolis, and Meakin giving a graph of groups decomposition for the maximal subgroups of certain regular semigroup amalgams. We also generalize a theorem of Hall by showing the strong embeddability of certain regular semigroup amalgams as well as structural results of Nambooripad and Pastijn on such amalgams.
منابع مشابه
Brandt extensions and primitive topologically periodic inverse topological semigroups
In this paper we find sufficient conditions on primitive inverse topological semigroup S under which: the inversion inv : (H(S)) (H(S)) is continuous; we show that every topologically periodic countable compact primitive inverse topological semigroups with closed H-classes is topologically isomorphic to an orthogonal sum P i2= Bi (Gi) of topological Brandt extensions Bi (Gi) of countably compac...
متن کاملSemigroups with inverse skeletons and Zappa-Sz$acute{rm e}$p products
The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^circ$ such that $aa^circ,a^circ a$ lie in $ Esubseteq E(S)$. Where $S$ possesses `enough' (in a precisely defined way) $E$-regular elements, analogues of Green's lemmas and even of Green's theorem hold, where Green's relations ${mathc...
متن کاملA graphical difference between the inverse and regular semigroups
In this paper we investigate the Green graphs for the regular and inverse semigroups by considering the Green classes of them. And by using the properties of these semigroups, we prove that all of the five Green graphs for the inverse semigroups are isomorphic complete graphs, while this doesn't hold for the regular semigroups. In other words, we prove that in a regular se...
متن کاملTHE ANALOGUE OF WEIGHTED GROUP ALGEBRA FOR SEMITOPOLOGICAL SEMIGROUPS
In [1,2,3], A. C. Baker and J.W. Baker studied the subspace Ma(S) of the convolution measure algebra M, (S) of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of C-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup ...
متن کاملSemigroups with Inverse Skeletons and Zappa-szép Products
The aim of this paper is to study semigroups possessing E-regular elements, where an element a of a semigroup S is E-regular if a has an inverse a◦ such that aa◦, a◦a lie in E ⊆ E(S). Where S possesses ‘enough’ (in a precisely defined way) E-regular elements, analogues of Green’s lemmas and even of Green’s theorem hold, where Green’s relations R,L,H and D are replaced by R̃E , L̃E , H̃E and D̃E . N...
متن کامل