Dempster-Shafer Theory Based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy
نویسندگان
چکیده
As a pivotal task in cancer therapy, outcome prediction is the foundation for tailoring and adapting a treatment planning. In this paper, we propose to use image features extracted from PET and clinical characteristics. Considering that both information sources are imprecise or noisy, a novel prediction model based on Dempster-Shafer theory is developed. Firstly, a specific loss function with sparse regularization is designed for learning an adaptive dissimilarity metric between feature vectors of labeled patients. Through minimizing this loss function, a linear low-dimensional transformation of the input features is then achieved; meanwhile, thanks to the sparse penalty, the influence of imprecise input features can also be reduced via feature selection. Finally, the learnt dissimilarity metric is used with the Evidential K-Nearest-Neighbor (EKNN) classifier to predict the outcome. We evaluated the proposed method on two clinical data sets concerning to lung and esophageal tumors, showing good performance.
منابع مشابه
A novel risk-based analysis for the production system under epistemic uncertainty
Risk analysis of production system, while the actual and appropriate data is not available, will cause wrong system parameters prediction and wrong decision making. In uncertainty condition, there are no appropriate measures for decision making. In epistemic uncertainty, we are confronted by the lack of data. Therefore, in calculating the system risk, we encounter vagueness that we have to use ...
متن کاملSelecting radiomic features from FDG-PET images for cancer treatment outcome prediction
As a vital task in cancer therapy, accurately predicting the treatment outcome is valuable for tailoring and adapting a treatment planning. To this end, multi-sources of information (radiomics, clinical characteristics, genomic expressions, etc) gathered before and during treatment are potentially profitable. In this paper, we propose such a prediction system primarily using radiomic features (...
متن کاملA NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY
In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...
متن کاملA Study on Properties of Dempster-Shafer Theory to Probability Theory transformations
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...
متن کاملA Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کامل