A Generalization of Hiraguchi's: Inequality for Posets
نویسنده
چکیده
For a poset X, Dim(X) is the smallest positive integer t for which X is isomorphic to a subposet of the Cartesian product of t chains. Hiraguchi proved that if 1 X I > 4, then Dim(X) < [ X l/2]. For each k Q 2, we define Dim,(X) as the smallest positive integer t for which Xis isomorphic to a subposet of the Cartesian product oft chains, each of length k. We then prove that if 1 X I > 5, Dim,(X) & {I X1/2) and if / X ~ > 6, then Dim,(X) Q [i X1/2].
منابع مشابه
On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملJ an 2 00 1 Generalizations of Eulerian partially ordered sets , flag numbers , and the Möbius function
A partially ordered set is r-thick if every nonempty open interval contains at least r elements. This paper studies the flag vectors of graded, r-thick posets and shows the smallest convex cone containing them is isomorphic to the cone of flag vectors of all graded posets. It also defines a k-analogue of the Möbius function and k-Eulerian posets, which are 2k-thick. Several characterizations of...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملRelations on generalized degree sequences
We study degree sequences for simplicial posets and polyhedral complexes, generalizing the well-studied graphical degree sequences. Here we extend the more common generalization of vertex-to-facet degree sequences by considering arbitrary face-to-flag degree sequences. In particular, these may be viewed as natural refinements of the flag f -vector of the poset. We investigate properties and rel...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 20 شماره
صفحات -
تاریخ انتشار 1976