Detecting Hotspots from Taxi Trajectory Data Using Spatial Cluster Analysis
نویسندگان
چکیده
A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1, 2014), weekday (Wednesday, May 7, 2014) and weekend (Saturday, May 10, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.
منابع مشابه
iTaxi: Context-Aware Taxi Demand Hotspots Prediction Using Ontology and Data Mining Approaches
It has been estimated that over 60 thousand licensed taxis in the Great Taipei area are not occupied over 70 percent of driving time on average. However, the taxi company, TaiwanTaxi, indicates that even in rush hour, there are customers whose requests are not satisfied. The demand and supply are not paired, causing not only customers wait too long for a cab, but also taxi drivers waste time an...
متن کاملDetecting Anomalous Trajectories and Behavior Patterns Using Hierarchical Clustering from Taxi GPS Data
Anomalous taxi trajectories are those chosen by a small number of drivers that are different from the regular choices of other drivers. These anomalous driving trajectories provide us an opportunity to extract driver or passenger behaviors and monitor adverse urban traffic events. Because various trajectory clustering methods have previously proven to be an effective means to analyze similariti...
متن کاملMulti-features taxi destination prediction with frequency domain processing
The traditional taxi prediction methods model the taxi trajectory as a sequence of spatial points. It cannot represent two-dimensional spatial relationships between trajectory points. Therefore, many methods transform the taxi GPS trajectory into a two-dimensional image, and express the spatial correlations by trajectory image. However, the trajectory image may have noise and sparsity according...
متن کاملAnalysis and Visualization for Hot Spot Based Route Recommendation Using Short-Dated Taxi GPS Traces
Taxi GPS traces, which contain a great deal of valuable information as regards to human mobility and city traffic, can be extracted to improve the quality of our lives. Since the method of visualized analysis is believed to be an effective way to present information vividly, we develop our analysis and visualization method based on a city’s short-dated taxi GPS traces, which can provide recomme...
متن کاملContext-aware taxi demand hotspots prediction
In an urban area, the demand for taxis is not always matched up with the supply. This paper proposes mining historical data to predict demand distributions with respect to contexts of time, weather, and taxi location. The four-step process consists of data filtering, clustering, semantic annotation, and hotness calculation. The results of three clustering algorithms are compared and demonstrate...
متن کامل