Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration.
نویسندگان
چکیده
The integration of optical components into microfluidic systems has the potential to reduce the amount of bulky external devices and thus reduce the cost. However, one of the challenges of this concept is the accurate alignment of the optical path among multiple optical components inside a chip. We propose a tunable micro-optofluidic prism based on the liquid-core liquid-cladding structure formed in a sector-shape chamber. The optical interface of the prism is maintained in a straight line shape by distributing a row of pressure barriers in the chamber. By adjusting the flow rate ratio between core and cladding streams, the apex angle of the prism can be tuned accordingly. As a consequence, the deviation angle of the light beam refracted by the prism can be changed continuously. This tunability of our optofluidic prism can be utilized for the alignment of the optical path inside a chip or for the development of optical switches.
منابع مشابه
Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure.
Miniaturized and tunable optical components, such as the waveguide, lens, and prism, have been of great interest for lab-on-chip systems. This Letter reports an optofluidic aperture stop formed by the liquid-core/liquid-cladding flow. The aperture size can be tuned accordingly by adjusting the flow rates. Manipulation of the aperture size allows control of the amount of light passing through th...
متن کاملBiconcave micro-optofluidic lens with low-refractive-index liquids.
One of the current problems of micro-optofluidics is the choice of a suitable liquid with a high refractive index (RI). We report the use of a low-RI liquid in a biconcave liquid-core liquid-cladding lens for focusing light. For the characterization of the lens, a telescope system was constructed from polydimethylsiloxane lenses to collimate and expand a light beam emitted from an optical fiber...
متن کاملAn electrokinetically tunable optofluidic bi-concave lens.
This paper numerically and experimentally investigates and demonstrates the design of an optofluidic in-plane bi-concave lens to perform both light focusing and diverging using the combined effect of pressure driven flow and electro-osmosis. The concave lens is formed in a rectangular chamber with a liquid core-liquid cladding (L(2)) configuration. Under constant flow rates, the performance of ...
متن کاملElectrokinetically tunable optofluidic bi-concave lens
This paper numerically and experimentally investigates and demonstrates the design of an optofluidic in -plane bi-concave lens to perform both light focusing and diverging using the combined effect of pressure driven flow and electroosmosis. The concave lens is formed in a rectangular chamber with liquid core liquid cladding (L) configuration. Under constant flowrates, the performance of the le...
متن کاملOptofluidic Elements for On-Chip Sample Analysis
The benefits of the integration of novel optofluidic elements, e.g., fluidic lenses and liquid-core / liquid-cladding (L2) waveguides, for on-chip optical sample analysis are discussed. Using properly designed microfluidic channels, pre-calculated flow rate ratios and transparent fluids with different refractive indices but similar viscosity novel fluidic optical elements can be created. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2010