Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
نویسندگان
چکیده
Various CuO nanostructures have been well studied as anode materials for lithium ion batteries (LIBs); however, there are few reports on the synthesis of porous CuO nanostructures used for anode materials, especially one-dimensional (1D) porous CuO. In this work, novel 1D highly porous CuO nanorods with tunable porous size were synthesized in large-quantities by a new, friendly, but very simple approach. We found that the pore size could be controlled by adjusting the sintering temperature in the calcination process. With the rising of calcination temperature, the pore size of CuO has been tuned in the range of ∼0.4 nm to 22 nm. The porous CuO materials have been applied as anode materials in LIBs and the effects of porous size on the electrochemical properties were observed. The highly porous CuO nanorods with porous size in the range of ∼6 nm to 22 nm yielded excellent high specific capacity, good cycling stability, and high rate performance, superior to that of most reported CuO nanocomposites. The CuO material delivers a high reversible capacity of 654 mA h g(-1) and 93% capacity retention over 200 cycles at a rate of 0.5 C. It also exhibits excellent high rate capacity of 410 mA h g(-1) even at 6 C. These results suggest that the facile synthetic method of producing a tunable highly porous CuO nanostructure can realize a long cycle life with high reversible capacity, which is suitable for next-generation high-performance LIBs.
منابع مشابه
Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
: [email protected] Abstract Three different morphology controlled copper oxide materials (porous microspheres, flower-like, and thorn-like CuO) were prepared by facile and environmentally friendly processes, which were further investigated for their electrochemical properties and performance at lithium-ion battery anodes. CuO microspheres were prepared by simply solution chemistry, whereas flow...
متن کاملMorphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries.
Nanostructured CuO anode materials with controllable morphologies have been successfully synthesized via a facile and environmentally friendly approach in the absence of any toxic surfactants or templates. In particular, leaf-like CuO, oatmeal-like CuO, and hollow-spherical CuO were obtained by changing the ligand agents. The structures and electrochemical performance of these as-prepared CuO w...
متن کاملGrowth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.
A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architec...
متن کاملInward lithium-ion breathing of hierarchically porous silicon anodes
Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a...
متن کامل3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage
New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 21 شماره
صفحات -
تاریخ انتشار 2012