Clustering via the Bayesian information criterion with applications in speech recognition

نویسندگان

  • Scott Saobing Chen
  • Ponani S. Gopalakrishnan
چکیده

One difficult problem we are often faced with in clustering analysis is how to choose the number of clusters. In this paper, we propcse to choose the number of clusters by optimizing the Bq2yesian information criterion (BIC), a model selection criierion in the statistics literature. We develop a termination criterion for the hierarchical clustering methods which optimizes the BIC criterion in a greedy fashion. The resulting algorithms are fully automatic. Our experiments on Gaussian mixture modeling and speaker clustering demonstrate that the BIC criterion is able to choose the number of clusters according to the intrinsic complexity present in the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Approaches in Speech Recognition

This paper focuses on applications of Bayesian approaches to speech recognition. Bayesian approaches have been widely studied in statistics and machine learning fields, and one of the advantages of the Bayesian approaches is to improve generalization ability compared to maximum likelihood approaches. The effectiveness for speech recognition is shown experimentally in speaker adaptation tasks by...

متن کامل

Bayesian context clustering using cross valid prior distribution for HMM-based speech recognition

Decision tree based context clustering [Young; '94] ・ Construct a parameter tying structure ・ Can estimate robust parameter ・ Can generate unseen context dependent models ・ Minimum description length (MDL) criterion [Shinoda; '97] Bayesian approach ・ Variational Bayesian (VB) method [Attias; '99] ⇒ Applied to speech recognition [Watanabe; '04] ・ Can use prior information ⇒ Affect context cluste...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

A robust high accuracy speech recognition system for mobile applications

This paper describes a robust, accurate, efficient, low-resource, medium-vocabulary, grammar-based speech recognition system using Hidden Markov Models for mobile applications. Among the issues and techniques we explore are improving robustness and efficiency of the front-end, using multiple microphones for removing extraneous signals from speech via a new multi-channel CDCN technique, reducing...

متن کامل

Automatic Construction of Regression Class Tree for MLLR Via Model-Based Hierarchical Clustering

In this paper, we propose a model-based hierarchical clustering algorithm that automatically builds a regression class tree for the well-known speaker adaptation technique Maximum Likelihood Linear Regression (MLLR). When building a regression class tree, the mean vectors of the Gaussian components of the model set of a speaker independent CDHMMbased speech recognition system are collected as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998