Retargeting R-type pyocins to generate novel bactericidal protein complexes.
نویسندگان
چکیده
R-type pyocins are high-molecular-weight bacteriocins that resemble bacteriophage tail structures and are produced by some Pseudomonas aeruginosa strains. R-type pyocins kill by dissipating the bacterial membrane potential after binding. The high-potency, single-hit bactericidal kinetics of R-type pyocins suggest that they could be effective antimicrobials. However, the limited antibacterial spectra of natural R-type pyocins would ultimately compromise their clinical utility. The spectra of these protein complexes are determined in large part by their tail fibers. By replacing the pyocin tail fibers with tail fibers of Pseudomonas phage PS17, we changed the bactericidal specificity of R2 pyocin particles to a different subset of P. aeruginosa strains, including some resistant to PS17 phage. We further extended this idea by fusing parts of R2 tail fibers with parts of tail fibers from phages that infect other bacteria, including Escherichia coli and Yersinia pestis, changing the killing spectrum of pyocins from P. aeruginosa to the bacterial genus, species, or strain that serves as a host for the donor phage. The assembly of active R-type pyocins requires chaperones specific for the C-terminal portion of the tail fiber. Natural and retargeted R-type pyocins exhibit narrow bactericidal spectra and thus can be expected to cause little collateral damage to the healthy microbiotae and not to promote the horizontal spread of multidrug resistance among bacteria. Engineered R-type pyocins may offer a novel alternative to traditional antibiotics in some infections.
منابع مشابه
An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157:H7.
Some strains of Pseudomonas aeruginosa produce R-type pyocins, which are high-molecular-weight phage tail-like protein complexes that have bactericidal activity against other Pseudomonas strains. These particles recognize and bind to bacterial surface structures via tail fibers, their primary spectrum determinant. R-type pyocins kill the cell by contracting a sheath-like structure and inserting...
متن کاملDifferent Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates.
Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with ba...
متن کاملAntibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model.
R-type pyocins are high-molecular-weight bacteriocins carried within the chromosomes of some bacterial species, such as Pseudomonas aeruginosa, and almost certainly evolved from lysogenic bacteriophages of the Myoviridae family. They contain no head structures and no DNA and are used as defense systems, usually against other strains of the same bacterial species. They bind with their tail fiber...
متن کاملLipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa.
Pseudomonas aeruginosa produces three different types of bacteriocins: the soluble S-pyocins and the bacteriophage-like F- and R-pyocins. R-pyocins kill susceptible bacteria of the same or closely related species with high efficiency. Five different types of R-pyocins (R1- to R5-pyocins) have been described based on their killing spectra and tail fiber protein sequences. We analyzed the distrib...
متن کاملA Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study
Prophage sequences became an integral part of bacterial genomes as a consequence of coevolution, encoding fitness or virulence factors. Such roles have been attributed to phage-derived elements identified in several Gram-negative species: The type VI secretion system (T6SS), the R- and F-type pyocins, and the newly discovered Serratia entomophila antifeeding prophage (Afp), and the Photorhabdus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 12 شماره
صفحات -
تاریخ انتشار 2008