A Distributed and Deterministic TDMA Algorithm for Write-All-With-Collision Model

نویسنده

  • Mahesh Arumugam
چکیده

Several self-stabilizing time division multiple access (TDMA) algorithms are proposed for sensor networks. In addition to providing a collision-free communication service, such algorithms enable the transformation of programs written in abstract models considered in distributed computing literature into a model consistent with sensor networks, i.e., write all with collision (WAC) model. Existing TDMA slot assignment algorithms have one or more of the following properties: (i) compute slots using a randomized algorithm, (ii) assume that the topology is known upfront, and/or (iii) assign slots sequentially. If these algorithms are used to transform abstract programs into programs in WAC model then the transformed programs are probabilistically correct, do not allow the addition of new nodes, and/or converge in a sequential fashion. In this paper, we propose a self-stabilizing deterministic TDMA algorithm where a sensor is aware of only its neighbors. We show that the slots are assigned to the sensors in a concurrent fashion and starting from arbitrary initial states, the algorithm converges to states where collision-free communication among the sensors is restored. Moreover, this algorithm facilitates the transformation of abstract programs into programs in WAC model that are deterministically correct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Stabilizing Deterministic Time Division Multiple Access for Sensor Networks

An algorithm for time division multiple access (TDMA) is found to be applicable in converting existing distributed algorithms into a model that is consistent with sensor networks. Such a TDMA service needs to be self-stabilizing so that in the event of corruption of assigned slots and clock drift, it recovers to states from where TDMA slots are consistent. Previous self-stabilizing solutions fo...

متن کامل

Self-stabilizing Deterministic TDMA for Sensor Networks

An algorithm for time division multiple access (TDMA) is desirable in sensor networks for energy management, as it allows a sensor to reduce the amount of idle listening. Also, TDMA has been found to be applicable in converting existing distributed algorithms into a model that is consistent with sensor networks. Such a TDMA service needs to be self-stabilizing so that in the event of corruption...

متن کامل

Transformations for Write-All-with-Collision Model

Dependable properties such as self-stabilization are crucial requirements in sensor networks. One way to achieve these properties is to utilize the vast literature on distributed systems where such self-stabilizing algorithms have been designed. Since these existing algorithms are designed in read/write model (or variations thereof), they cannot be directly applied in sensor networks. For this ...

متن کامل

Opt-TDMA/DCR: Optimized TDMA Deterministic Collision Resolution Approach for Hard Real-Time Mobile Ad hoc Networks

A new kind of critical applications, using Mobile Ad hoc networks, has appeared. These applications such as vehicular or robotic ones are called Hard Real Time Applications. Their major requirement is to respect the real time constraints especially the deadlines on the treatment and the communication delay. However, providing real-time communication, with predictable delay, is a challenge becau...

متن کامل

Improving LoRaWAN Performance Using Reservation ALOHA

LoRaWAN is one of the new and updated standards for IoT applications. However, the expected high density of peripheral devices for each gateway, and the absence of an operative synchronization mechanism between the gateway and peripherals, all of which challenges the networks scalability. In this paper, we propose to normalize the communication of LoRaWAN networks using a Reservation-ALOHA (R-A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008