Chemical vapor sensing with monolayer MoS2.
نویسندگان
چکیده
Two-dimensional materials such as graphene show great potential for future nanoscale electronic devices. The high surface-to-volume ratio is a natural asset for applications such as chemical sensing, where perturbations to the surface resulting in charge redistribution are readily manifested in the transport characteristics. Here we show that single monolayer MoS(2) functions effectively as a chemical sensor, exhibiting highly selective reactivity to a range of analytes and providing sensitive transduction of transient surface physisorption events to the conductance of the monolayer channel. We find strong response upon exposure to triethylamine, a decomposition product of the V-series nerve gas agents. We discuss these results in the context of analyte/sensor interaction in which the analyte serves as either an electron donor or acceptor, producing a temporary charge perturbation of the sensor material. We find highly selective response to electron donors and little response to electron acceptors, consistent with the weak n-type character of our MoS(2). The MoS(2) sensor exhibits a much higher selectivity than carbon nanotube-based sensors.
منابع مشابه
Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices
Articles you may be interested in Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl. Detection of organic vapors by graphene films functionalized with metallic nanoparticles Oxygen sensing properties at high temperatu...
متن کاملHigh-performance MoS2 transistors with low-resistance molybdenum contacts
Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.
متن کاملStatistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect trans...
متن کاملSecond harmonic microscopy of monolayer MoS2
We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. The second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 10−7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle...
متن کاملMonolayer MoSe2 grown by chemical vapor deposition for fast photodetection.
Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition ...
متن کاملRole of the seeding promoter in MoS2 growth by chemical vapor deposition.
The thinnest semiconductor, molybdenum disulfide (MoS2) monolayer, exhibits promising prospects in the applications of optoelectronics and valleytronics. A uniform and highly crystalline MoS2 monolayer in a large area is highly desirable for both fundamental studies and substantial applications. Here, utilizing various aromatic molecules as seeding promoters, a large-area, highly crystalline, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2013