Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay.

نویسندگان

  • Nikhil V Munshi
  • John McAnally
  • Svetlana Bezprozvannaya
  • Jeff M Berry
  • James A Richardson
  • Joseph A Hill
  • Eric N Olson
چکیده

The cardiac conduction system comprises a specialized tract of electrically coupled cardiomyocytes responsible for impulse propagation through the heart. Abnormalities in cardiac conduction are responsible for numerous forms of cardiac arrhythmias, but relatively little is known about the gene regulatory mechanisms that control the formation of the conduction system. We demonstrate that a distal enhancer for the connexin 30.2 (Cx30.2, also known as Gjd3) gene, which encodes a gap junction protein required for normal atrioventricular (AV) delay in mice, is necessary and sufficient to direct expression to the developing AV conduction system (AVCS). Moreover, we show that this enhancer requires Tbx5 and Gata4 for proper expression in the conduction system, and Gata4(+/-) mice have short PR intervals indicative of accelerated AV conduction. Thus, our results implicate Gata4 in conduction system function and provide a clearer understanding of the transcriptional pathways that impact normal AV delay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ETS-dependent regulation of a distal Gata4 cardiac enhancer.

The developing heart contains an inner tube of specialized endothelium known as endocardium, which performs multiple essential functions. In spite of the essential role of the endocardium in heart development and function, the transcriptional pathways that regulate its development remain largely undefined. GATA4 is a zinc finger transcription factor that is expressed in multiple cardiovascular ...

متن کامل

Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element.

The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development. Despite the importance of GATA4 in tissue specificat...

متن کامل

Development of heart valves requires Gata4 expression in endothelial-derived cells.

Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart disease. At localized swellings of extracellular matrix known as the endocardial cushions, the endothelial lining of the heart undergoes an epithelial to mesenchymal transition (EMT) to form the mesenchymal progenitors of the AV valves. Further growth and dif...

متن کامل

Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart.

Identification of genomic regions that control tissue-specific gene expression is currently problematic. ChIP and high-throughput sequencing (ChIP-seq) of enhancer-associated proteins such as p300 identifies some but not all enhancers active in a tissue. Here we show that co-occupancy of a chromatin region by multiple transcription factors (TFs) identifies a distinct set of enhancers. GATA-bind...

متن کامل

An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo.

Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 15  شماره 

صفحات  -

تاریخ انتشار 2009