Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

نویسندگان

  • Yoshiharu Kojima
  • Masahiko Sakai
  • Naoki Nishida
  • Keiichirou Kusakari
  • Toshiki Sakabe
چکیده

The reachability problem for an initial term, a goal term, and a rewrite system is to decide whether the initial term is reachable to goal one by the rewrite system or not. The innermost reachability problem is to decide whether the initial term is reachable to goal one by innermost reductions of the rewrite system or not. A context-sensitive term rewriting system (CS-TRS) is a pair of a term rewriting system and a mapping that specifies arguments of function symbols and determines rewritable positions of terms. In this paper, we show that both reachability for right-linear right-shallow CS-TRSs and innermost reachability for shallow CS-TRSs are decidable. We prove these claims by presenting algorithms to construct a tree automaton accepting the set of terms reachable from a given term by (innermost) reductions of a given CS-TRS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innermost Reachability and Context Sensitive Reachability Properties Are Decidable for Linear Right-Shallow Term Rewriting Systems

A reachability problem is a problem used to decide whether s is reachable to t by R or not for a given two terms s, t and a term rewriting system R. Since it is known that this problem is undecidable, effort has been devoted to finding subclasses of term rewriting systems in which the reachability is decidable. However few works on decidability exist for innermost reduction strategy or context-...

متن کامل

Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

The reachability problem for given an initial term, a goal term, and a term rewriting system (TRS) is to decide whether the initial one is reachable to the goal one by the TRS or not. A term is shallow if each variable in the term occurs at depth 0 or 1. Innermost reduction is a strategy that rewrites innermost redexes, and context-sensitive reduction is a strategy in which rewritable positions...

متن کامل

Confluence of Shallow Right-Linear Rewrite Systems

We show that confluence of shallow and right-linear term rewriting systems is decidable. This class of rewriting system is expressive enough to include nontrivial nonground rules such as commutativity, identity, and idempotence. Our proof uses the fact that this class of rewrite systems is known to be regularity-preserving, which implies that its reachability and joinability problems are decida...

متن کامل

Decidability of Termination and Innermost Termination for Term Rewriting Systems with Right-Shallow Dependency Pairs

In this paper, we show that the termination and the innermost termination properties are decidable for the class of term rewriting systems (TRSs for short) all of whose dependency pairs are right-linear and right-shallow. We also show that the innermost termination is decidable for the class of TRSs all of whose dependency pairs are shallow. The key observation common to these two classes is as...

متن کامل

Some Classes of Term Rewriting Systems for which Termination is Decidable

Termination is one of the central properties of term rewriting systems (TRSs for short). A TRS is called terminating if it does not admit any infinite rewrite sequence. The efforts to find classes of TRSs whose termination is decidable have been made for decades and several positive results have been proposed, for example, right-ground TRSs and right-linear shallow TRSs. In this research, we st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011