Specific and Stable Suppression of HIV Provirus Expression In Vitro by Chimeric Zinc Finger DNA Methyltransferase 1
نویسندگان
چکیده
HIV-1 inserts its proviral DNA into the infected host cells, by which HIV proviral DNA can then be duplicated along with each cell division. Thus, provirus cannot be eradicated completely by current antiretroviral therapy. We have developed an innovative strategy to silence the HIV provirus by targeted DNA methylation on the HIV promoter region. We genetically engineered a chimeric DNA methyltransferase 1 composed of designed zinc-finger proteins to become ZF2 DNMT1. After transient transfection of the molecular clone encoding this chimeric protein into HIV-1 infected or latently infected cells, efficient suppression of HIV-1 expression by the methylation of CpG islands in 5'-LTR was observed and quantified. The effective suppression of HIV in latently infected cells by ZF2-DNMT1 is stable and can last through about 40 cell passages. Cytotoxic caused by ZF2-DNMT1 was only observed during cellular proliferation. Taken together, our results demonstrate the potential of this novel approach for anti-HIV-1 therapy.
منابع مشابه
Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells
HIV-infected individuals currently cannot be completely cured because existing antiviral therapy regimens do not address HIV provirus DNA, flanked by long terminal repeats (LTRs), already integrated into host genome. Here, we present a possible alternative therapeutic approach to specifically and directly mediate deletion of the integrated full-length HIV provirus from infected and latently inf...
متن کاملSequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase.
We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selec...
متن کاملGenetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain.
Retroviral integration is the step which leads to establishment of the provirus, cis- and trans-acting regions of the human immunodeficiency type 1 (HIV-1) retrovirus genome, including the attachment site (att) at the ends of the unintegrated viral DNA and the conserved domains within the integrase (IN) protein, have been identified as being important for integration. We investigated the role o...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملTargeted Methylation of the Epithelial Cell Adhesion Molecule (EpCAM) Promoter to Silence Its Expression in Ovarian Cancer Cells
The Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in many cancers including ovarian cancer and EpCAM overexpression correlates with decreased survival of patients. It was the aim of this study to achieve a targeted methylation of the EpCAM promoter and silence EpCAM gene expression using an engineered zinc finger protein that specifically binds the EpCAM promoter fused to the catal...
متن کامل