Oxygen self-diffusion in HfO2 studied by electron spectroscopy.
نویسندگان
چکیده
High-resolution measurement of the energy of electrons backscattered from oxygen atoms makes it possible to distinguish between (18)O and (16)O isotopes as the energy of elastically scattered electrons depends on the mass of the scattering atom. Here we show that this approach is suitable for measuring oxygen self-diffusion in HfO2 using a Hf(16)O2 (20 nm)/Hf(18)O2 bilayers (60 nm). The mean depth probed (for which the total path length equals the inelastic mean free path) is either 5 or 15 nm in our experiment, depending on the geometry used. Before annealing, the elastic peak from O is thus mainly due to electrons scattered from (16)O in the outer layer, while after annealing the signal from (18)O increases due to diffusion from the underlying Hf(18)O2 layer. For high annealing temperatures the observed interdiffusion is consistent with an activation energy of 1 eV, but at lower temperatures interdiffusion decreases with increasing annealing time. We interpret this to be a consequence of defects, present in the layers early on and enhancing the oxygen diffusivity, disappearing during the annealing process.
منابع مشابه
Thermal decomposition behavior of the HfO2 ÕSiO2 ÕSi system
We report on the thermal decomposition of uncapped, ultrathin HfO2 films grown by chemical vapor deposition on SiO2 /Si(100) substrates. Medium energy ion scattering, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy were used to examine the films after they had been annealed in vacuum to 900–1050 °C. Film decomposition is a strong function of the HfO2 o...
متن کاملProbing the Electronic Structure of HfO2 polymorphs via Electron Energy Loss Spectroscopy
Hafnia is one of the most widely used wide gap materials in the microelectronic industry. Stemming from the need to miniaturize electronic devices, high κ materials such as hafnia-based compounds replace SiO2 in gate oxides, thereby decreasing the equivalent oxide thickness of the gate dielectric. On the other hand, scaling down deteriorates the physical properties of the latter viz., leakage c...
متن کاملDynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy
The trapping process of charge trapping flash with HfO2 film as the charge capture layer has been investigated by in situ electron energy-loss spectroscopy and in situ energy filter image under external positive bias. The results show that oxygen vacancies can be generated inhomogeneously in HfO2 trapping layer during the program process. The distribution of the oxygen vacancy is not same as th...
متن کاملDetermination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures
We present a combined electrical and modeling study to determine the tunneling electron effective mass and electron affinity for HfO2. Experimental capacitance-voltage (C-V) and current-voltage (I-V) characteristics are presented for HfO2 films deposited on Si(100) substrates by atomic layer deposition (ALD) and by electron beam evaporation (e-beam), with equivalent oxide thicknesses in the ran...
متن کاملFabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates
Hafnia (HfO2) hollow nanofibers (HNs) were synthesized by atomic layer deposition (ALD) using electrospun nylon 6,6 nanofibers as templates. HfO2 layers were deposited on polymeric nanofibers at 200 C by alternating reactant exposures of tetrakis(dimethylamido)hafnium and water. Polymeric nanofiber templates were subsequently removed by an ex situ calcination process at 500 C under air ambient....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 17 شماره
صفحات -
تاریخ انتشار 2014